Feed My Inve

BRA

EJY

Submitted a

The City of Largest Laredo, Tagos

January 25, 1999

118069.N0.ZZ

Mr. Jerry Pinzon, P.E. Assistant Utilities Director 4002 N. Bartlett Ave. P.O. Box 2950 Laredo, TX 78044

CH2M HILL
613 NW Loop 410
Suite 200
San Antonio, TX
78216
Tel 210.377.3081
Fax 210.349.8944

Subject: Aquifer Storage and Recovery Feasibility Investigation - Step 2 Report

Dear Mr. Pinzon:

CH2M HILL is pleased to transmit this Step 2 Report for the Aquifer Storage and Recovery Feasibility Investigation. This phase of the investigation consisted of extensive fieldwork performed in conjunction with the development and testing of observation wells. This followed the completion of an initial desktop study phase and was performed to further the understanding of the Laredo Formation in the Laredo area.

One of the most important criteria considered during the project was understanding the ability of local aquifers to accept injected water and return that water when needed. This characteristic is known as the aquifer's permeability and in the case of the Laredo Formation, the permeability is very low. Although injection and recovery is possible the rates will be lower than desired and physical plugging of the aquifer is possible. The Conclusions and Recommendations section of the report discuss the findings in more detail. In the future, we recommend that the City consider options for enhancing the permeability of the aquifer to improve injection and recovery rates.

We have enjoyed working with the City on this project. City personnel were instrumental in the conduct of this study and their efforts are greatly appreciated.

Sincerely,

CH2M HILL

J. Michael Anglea, P.E., DEE

Project Manager

SAN/WP/118069/001.DOC

c: Fernando Roman, P.E.

Rogelio Rivera, P.E.

ad Austea

Step 2 Report

AQUIFER STORAGE and and RECOVERY SYSTEM

Submitted to:

The City of Laredo Laredo, Texas

by:

January 1999

Contents

ACRO	ONYMS AND ABBREVIATIONS	ii
GLOS	SARY	iii
1.0	INTRODUCTION	1-1
1.1	Overview	1-1
1.2	REPORT ORGANIZATION	
2.0	DESCRIPTION OF INVESTIGATION	2-1
2.1	Introduction	2-1
	PRELIMINARY FIELD INVESTIGATION ACTIVITIES	
	2.1 Supplemental Geophysical Evaluation	
2	2.2.2 Existing Well Survey	2-2
2.3	CONSTRUCTION AND TESTING ACTIVITIES	2-4
_	2.3.1 Borings and Well Installations	
2	2.3.2 Rock Coring	
	2.3.3 Geophysical Logging	
	2.3.4 Well Development	
	2.3.5 Aquifer Testing	
	1.3.6 Water Sampling	
	2.3.7 Well Redevelopment	
	2.3.8 MFI and TSS Analyses	
2	2.3.9 Aquifer Compatibility Testing	2-9
3.0	RESULTS	3-1
3.1	AQUIFER CHARACTERISTICS	3-1
3	2.1.1 Aquifer Setting and Distribution	3-1
3	1.1.2 Aquifer Properties	3-2
3	1.1.3 Groundwater Quality	
3	1.1.4 Aquifer Characteristics at the Del Mar Test Site	<i>3-9</i>
3.2	SURFACE WATER CHARACTERISTICS	3-10
3	2.2.1 Modified Fouling Index Results	3-10
3	2.2.2 Laboratory Analytical Results	3-11
3.3	AQUIFER COMPATIBILITY TEST RESULTS	
3	3.3.1 Testing Methodology and Overview	3-11
3	3.3.2 Discussion of Test Results	3-15
3	3.3.3 Discussion of Geochemical Results	3-16
3	3.3.4 Summary of Aquifer Compatibility Testing Results	3-21
4.0	SUMMARY OF FINDINGS	4-1
4.1	SUMMARY OF ACTIVITIES AND RESULTS	4-1
4.2		
4.3		
5.0	CONSTRUCTORS AND DESCONDENSING ATTOMO	E 1
	CONCLUSIONS AND RECOMMENDATIONS	
5.1	CONCLUSIONS AND RECOMMENDATIONS	

Appendices

APPENDIX A	GEOPHYSICAL EVALUATION OF THE LAREDO FORMATION	
Attachmen	nt A-1—Sites 7 and 12, Geophysical Logs	
APPENDIX B	TWDB WELL SURVEY AND SAMPLING EFFORT	
APPENDIX C		
APPENDIX D	TEST WELL GEOPHYSICAL DATA	
	nt D-1—TW-1: McPherson Storage Tank Site	
	nt D-2—TW-2: Del Mar Storage Tank Site	
	nt D-3—TW-2A: Del Mar Storage Tank Site	
	nt D-4—TW-3: East Corridor Storage Tank and Booster Station Site	
APPENDIX E	· · · · · · · · · · · · · · · · · · ·	
Attachmer	nt E-1—Test Well TW-1	
	nt E-2—Test Wells TW-2/TW-2A	
Attachmer	nt E-3—Test Well TW-3	
APPENDIX F	LABORATORY REPORTS	
APPENDIX G	CORE ANALYSIS REPORT	
APPENDIX H	MFI DATA	
Attachmer	nt H-1—MFI Data-Del Mar Site	
Attachmer	nt H-2—MFI Data-East corridor Site	
Attachmer	nt H-3—MFI Data-NW Storage Tank	
Attachmer	nt H-4—MFI Data-Jefferson Water Treatment Plant	
List of Tables		
LIST OF FADIES		
TABLE 2-1	SUMMARY OF TWDB WATER WELL SURVEY AND SAMPLING	
Table 2-2	BORINGS AND WELLS COMPLETED	
TABLE 2-3	TEST WELL CONSTRUCTION DETAILS	
TABLE 2-4	LAREDO GEOPHYSICAL LOGGING SUMMARY	
TABLE 2-5	AQUIFER TEST SUMMARY	
TABLE 3-1	SUMMARY OF AQUIFER TEST RESULTS	
TABLE 3-2	STEP PUMPING TEST EVALUATION	
TABLE 3-3	GROUNDWATER ANALYTICAL RESULTS, EXISTING WATER WELLS	
TABLE 3-4	GROUNDWATER ANALYTICAL RESULTS TEST WELLS	
TABLE 3-5	PERCENTAGES OF VARIOUS ANIONS AND CATIONS	
TABLE 3-6	COMPARISON OF AQUIFER TEST PROPERTIES, DEL MAR TEST SITE	
TABLE 3-7	MFI TEST RESULTS	
TABLE 3-8	SURFACE WATER ANALYTICAL DATA	
TABLE 3-9 TABLE 3-10	AQUIFER COMPATIBILITY TESTING SUMMARY	
TABLE 3-10	SAMPLING SUITE OF ANALYSESSAMPLING SCHEDULE	
TABLE 3-11	AQUIFER COMPATIBILITY TEST ANALYTICAL RESULTS	
TABLE 3-12	STEP 1 AND STEP 2 ASSUMPTIONS	
TABLE 4-1	COST ESTIMATE – 5 MGD ASR SYSTEM.	
1 ABLE 4-2	CUST ESTIMATE - 5 MIGD ASK STSTEM	······································
List of Eigure	•	
List of Figure		
FIGURE 2-1	FACILITY LOCATIONS	
Figure 2-2	EXISTING WATER WELLS AND TEST WELLS	
Figure 3-1	LOCATION OF LAREDO FORMATION OUTCROP	
Figure 3-2	LAREDO FORMATION GEOPHYSICAL PROFILE A-A'	
FIGURE 3-3	LAREDO FORMATION GEOPHYSICAL PROFILE B-B'	
Figure 3-4	TW-1 March, 1997 40-Hour Aquifer Test	
FIGURE 3-5	TW-2 JULY, 1997 PUMPING WELL AQUIFER TEST	
Figure 3-6	TW-2A July, 1997 Observation Well Aquifer Test	
FIGURE 3-7	TW-3 May, 1997 13-Hour Aquifer Test	3-29

FIGURE 3-8	DISTRIBUTION OF SPECIFIC CAPACITY	3-30
FIGURE 3-9	PIPER PLOT	3-7
FIGURE 3-10	SPATIAL DISTRIBUTION OF GEOCHEMICAL DATA	3-31
FIGURE 3-11	JANUARY, 1998 INJECTION TEST SUMMARY	3-32
FIGURE 3-12	RECHARGE WATER LEVELS JANUARY, 1998	
FIGURE 3-13	RECOVERY WATER LEVELS JANUARY, 1998	3-34
FIGURE 3-14	CHLORIDE RESPONSE JANUARY, 1998	3-35
FIGURE 3-15	TDS RESPONSE JANUARY, 1998	
FIGURE 3-16	CHLORIDE AND TDS JANUARY, 1998	3-37
FIGURE 3-17	CALCIUM RESPONSE JANUARY, 1998	3-38
FIGURE 3-18	CHLORIDE AND CALCIUM JANUARY, 1998	3-39
FIGURE 3-19	SODIUM RESPONSE JANUARY, 1998	3-40
FIGURE 3-20	CHLORIDE AND SODIUM JANUARY, 1998	3-41
FIGURE 3-21	ALKALINITY RESPONSE JANUARY, 1998	3-42
FIGURE 3-22	CHLORIDE AND ALKALINITY JANUARY, 1998	3-43
FIGURE 3-23	PH RESPONSE JANUARY, 1998	3-44
FIGURE 3-24	TEMPERATURE RESPONSE JANUARY, 1998	3-45

Acronyms and Abbreviations

ASR Aquifer Storage Recovery

bgs below ground surface

gpm a measure of the quantity of water

MFI modified fouling index

mg/l milligrams per liter

mL milliliters

Mv millivolts

O&M operation and maintenance

Psi pounds per square inch

SAP sodium acid polyphosphate

SP spontaneous potential

TDS total dissolved solids

TOC total organic carbon

TSS total suspended solids

TSS total suspended solids

TWDB Texas Water Development Board

Glossary

Anion. An ion that bears a negative charge.

Aquifer. Any zone below the surface of the earth, which stores, transmits, and yields water in sufficient quantities for human use.

Cation. An ion that bears a positive charge.

Dip. The angle at which a geologic layer or stratum is inclined from the horizontal.

Drawdown. The amount of drop in water level from the original, or static, water level as a result of the pumping of a well.

Eh. The oxidation-reduction potential of water. Measured with a hydrogen electrode, in units of millivolts.

Friable. Easily crumbled, as with rock that is poorly cemented.

Groundwater. Water contained underground within an aquifer.

Native groundwater. The groundwater that occupied the storage zone before ASR was initiated, also the groundwater that surrounds the ASR storage "bubble."

Outcrop. An exposure of bedrock or strata through the overlying soil.

pH. The measure of the acidity of water, with a pH of 7 being considered neutral. A lower pH indicates a more acidic solution.

Raw water. Water that is used in its current state, without additional treatment.

Recharge. The injection of water underground for storage in an aquifer, as in ASR operations.

Recovered Water. Water pumped from an ASR well after recharge has occurred. Typically consists of a mixture of stored water and formation water.

Recovery. The withdrawal of stored water from underground.

Rock cores. Cylindrical samples of rock typically collected by drilling.

Sandstone. A cemented sediment composed of quartz grains.

Shale. A sediment formed by laminated material primarily of clay grade (less than 1/256 millimeters in size).

Siltstone. A very fine grained rock consisting of particles of silt grade (1/16 millimeters to 1/256 millimeters in size).

Specific capacity. A measure of well capacity defined as the amount of well yield per foot of water level drawdown in the pumped well.

Total dissolved solids (TDS). An indicator of a water's salinity, defined as the mass of dissolved solids per unit volume of water (commonly expressed in mg/l).

Transmissivity. The rate at which water of the prevailing kinematic viscosity is transmitted through a unit width of an aquifer under a unit hydraulic gradient.

1.0 Introduction

1.1 Overview

The City of Laredo, Texas, operates a water supply system that serves residential, commercial, industrial, and wholesale customers in the City and surrounding areas. The Rio Grande River is currently the sole source of raw water. The City is located along a reach of the river between the Amistad and Falcon Reservoirs.

The City is experiencing growth in population and water demand, particularly in areas north and south of the City. The current and projected growth is resulting in increased water demands and the requirement for expanded water system facilities. Additionally, the population growth will result in the City requiring additional municipal water rights in the near future. While there is an active market in water rights purchase and sales, the amount of water available to meet continued growth in this area has a finite limit, especially during drought conditions. The Rio Grande Watermaster has periodically implemented restrictions on agricultural water rights and has the authority to prorate municipal water rights should this ever become necessary.

Due to continued growth, the City of Laredo applied for, and received, partial grant funding from the Texas Water Development Board (TWDB) to begin evaluating whether Aquifer Storage and Recovery (ASR) would be feasible and beneficial to the City. The City applied for the grant funding in July 1995.

The ASR concept works by storing large volumes of water through wells drilled into existing underground water bearing geologic formations known as aquifers. Water is typically produced for ASR storage during times of the year when excess treated water supplies are available. The stored water is later recovered by pumping the wells to meet demands when supply is limited, or treatment capacity is exceeded. Experience with ASR systems for other utilities has shown that ASR systems can typically be implemented for substantially less cost than the more conventional alternatives to meeting peak water demands.

This report on the preliminary feasibility of ASR for the City of Laredo represents the second step in a three-step investigative process. The report presents the results and recommendations from an extensive field investigation and analytical testing program.

1.2 Report Organization

Section 2.0 of this report presents the various activities performed during the project. Results of the field investigation are presented in Section 3.0. Section 4.0 presents a summary of the findings and the results of an economic analysis. Section 5.0 presents conclusions and recommendations.

2.0 Description of Investigation

2.1 Introduction

The investigation reported herein consisted of several tasks to evaluate the subsurface conditions in the Laredo area. The work as reported is divided into two sets of tasks. The first set describes the preliminary field investigation activities, which included a geologic evaluation based on existing geophysical logs, and an existing well survey and groundwater quality sampling program. The second set of tasks were the construction and testing activities, which included a test drilling program and an aquifer compatibility test designed to evaluate and characterize the Laredo Formation. The preliminary field investigation activities were conducted between September 1996 and January 1997. The construction and testing activities were conducted between January 1997 and February 1998.

The TWDB provided construction labor and equipment for the well installations and exploratory drilling, an existing well survey and groundwater sampling, and geophysical logging. The TWDB also provided substantial testing assistance. TWDB labor and equipment were provided through an agreement between the City and the TWDB. The involvement of the TWDB through this arrangement provided the construction services for this work at substantial savings to the City, and helped greatly in the success of this project. Engineering costs and direct costs incurred by the City were partially offset by a Research and Development grant from the TWDB.

2.2 Preliminary Field Investigation Activities

2.2.1 Supplemental Geophysical Evaluation

The results of the Step 1 investigation for this program recommended proceeding with a test-drilling program in the Laredo Formation. This formation is the shallowest of three geologic units identified in the Laredo area with the capability to transmit groundwater. However, during much of the Step 1 investigation, deeper geologic units were the primary focus and limited information was obtained regarding the Laredo Formation. As a result, a supplemental geophysical evaluation was conducted as a precursor to the subsequent field investigation. The goal of the geophysical evaluation was to assess potential drilling locations in the Laredo area based on the distribution, thickness, and continuity of sand layers within the Laredo Formation. The area investigated was selected to coincide with the logical location of future ASR facilities (near potable water transmission lines and water storage tanks). A map showing the location of the City of Laredo major water system facilities is presented as **Figure 2-1**.

The findings of this evaluation were summarized in a CH2M HILL draft memorandum dated November 20, 1996, that was distributed to the TWDB and City of Laredo. The evaluation was later updated to include data from the field investigation and is presented in **Appendix A**. The evaluation is based on analyses of existing geophysical logs from oil and

gas wells, and water wells in the Laredo area. Included are geophysical profiles and a net sand thickness distribution map. The findings of the evaluation are summarized below:

- The Laredo Formation consists of relatively fine-grained sediments including clays, silts, and very fine sand and sandstone. The formation contains relatively thicker and more permeable sediments in the upper portions of the formation relative to its entire thickness. This zone is referred to as the upper sand zone.
- The Laredo Formation outcrops within the City in a southwest to northeast strike and
 dips to the southeast. The formation thickens to the southeast along the dip. Because the
 outcrop occurs within the City, shallower portions of the formation, including the upper
 sand zone, are absent or only partially present in some areas, particularly in the
 southern and western portions of the City.
- In areas where the entire formation is present, a distinct pattern relating the thickness of the upper sand zone and geographic area is not evident based on existing information.
- Based on the geophysical profiles, four of the seven locations originally selected for test
 drilling appeared to contain thin or incomplete sequences of the "upper sand zone".
 Complete sections of the upper sand zone were identified at the three selected test sites:
 the Del Mar and McPherson storage tanks and the East Corridor storage tank and
 booster station (Figure 2-1).

More specific information regarding the Laredo Formation and findings from the geophysical evaluation are discussed in Section 3.0.

2.2.2 Existing Well Survey

In December 1996, an existing well survey and groundwater sampling task was conducted. The TWDB provided most of the labor to conduct this task. The objectives of this study were to identify and locate existing water wells screened in the Laredo Formation; to obtain water samples for laboratory analysis; and to obtain measurements of water levels and pumping rates in the wells. This information was used to further evaluate potential drilling locations. Table 2-1 summarizes wells identified during the survey. The well locations are shown on Figure 2-2 and include, where available, construction information obtained from drillers' logs on file with the TWDB. The locations of the wells were obtained using a handheld global positioning system unit. A copy of the location and other field information the TWDB obtained during this task is included in Appendix B.

Eleven existing wells were sampled by TWDB or City of Laredo personnel between early December (1966) and late January (1997). Three of the 14 wells identified by the TWDB were not accessible for sampling. Based on construction information, it was determined that two of the wells sampled, 85-29-301 and 85-37-204, are not screened in the Laredo Formation.

The groundwater samples were submitted to the City of Laredo Water Pollution Control Laboratory for analysis of cations, anions, and general chemistry parameters. Selected cations were analyzed at Core Laboratories of Corpus Christi, Texas. Analytical results associated with this effort are discussed in Section 3 along with analyses performed later in the project.

TABLE 2-1
Summary of TWDB Water Well Survey and Sampling
Laredo Aquifer Storage and Recovery Project

Sampler	SWN	Owner	Lab Sample?	Status	Remarks
TWDB	85-20-901	Laredo Reddy Mix Co.	AQ-01		Pumps into 8' x 20" concrete tank
TWDB	85-28-301	Flores	No	Abandoned	Was used for domestic, except drinking water
TWDB	85-28-601	Anzon, Inc.	No	Unused	
TWDB	85-29-708	Trevino	AQ-02		Was used for domestic, yard water, wash
TWDB	85-37-404	Minne	AQ-03		Domestic
TWDB	85-37-406	Whiteside	AQ-04		Domestic
TWDB	85-29-301	Killam Cattle Co.	AQ-05		Domestic
TWDB	85-29-102	Laredo Country Club	AQ-06		Irrigation
TWDB	85-29-401	Mann	AQ-07		
TWDB	85-29-706	Catholic Cemetary	AQ-08		Irrigation
TWDB	85-29-709	Mercy Hospital	AQ-12		Irrigation - good water reported
City of Laredo	85-29-804	Polston	AQ-13	In Use - Temporarily	Industrial
TWDB	85-37-204	Garcia	AQ-14		Stock
TWDB	85-29-203	Enron Oil & Gas Co.	No	Inoperative	Near gas production well #2
TWDB	85-29-402	Benavides	No	Inoperative	
TWDB	85-29-707	Bermudez	No		Did not visit this well, unable to contact owner

Notes: SWN = state well number

2.3 Construction and Testing Activities

Based on the results of the preliminary field activities, test hole sites were selected at the following locations: McPherson storage tank, Del Mar storage tank, and the East Corridor storage tank and booster station (**Figure 2-1**). As discussed earlier, it was determined that each of these sites could serve as a future location for operational ASR facilities and all three are located above relatively complete sections of the upper sand zone within the Laredo Formation.

A typical construction cycle included several tasks, beginning with the drilling of an exploratory boring, followed by mudded borehole geophysical logging, monitor well installation, well development, aquifer testing, and groundwater sampling. Later tasks include modified fouling index (MFI) testing and aquifer compatibility testing. A summary of each of these activities is presented below.

2.3.1 Borings and Well Installations

A total of four exploratory borings and four monitor wells were constructed at the three sites. Two exploratory borings and two monitor wells were constructed at the Del Mar site. A summary of the borings and well completions is presented in **Table 2-2**.

Table 2-2 Borings and Wells CompletedLaredo Aquifer Storage and Recovery Project

Construction Dates	Location	Wells Completed	
1/7/97 – 1/13/97	McPherson Storage Tank	TW-1	
2/9/97 2/20/97	Del Mar Storage Tank	TW-2	
3/19/97 - 4/7/97	East Corridor Storage Tank	TW-3	
7/9/97 – 7/15/97	Del Mar Storage Tank	TW-2A	

Each of the first three well sites (TW-1, TW-2, and TW-3) were drilled through nearly the entire thickness of the Laredo Formation (800 to 1000 feet). These drilling depths were chosen to verify the results of the supplemental geologic evaluation and confirm the stratigraphic position of the upper sand zone.

Following data review and a discussion with the TWDB and City of Laredo in early June, 1997, a fourth boring, TW-2A, was scheduled at the Del Mar site for the purpose of obtaining rock core samples. TW-2A was drilled within 200 feet of TW-2 and was advanced to the base of the upper sand zone (430 feet).

All four borings were advanced using the mud rotary drilling technique. Prior to or concurrent with TWDB mobilizing to each site, selected sites were secured by temporary fencing and mud pits were constructed. During the drilling of all borings, cuttings were obtained at 10-foot intervals and stored onsite in sample bags. Boring logs were prepared for each boring and are presented in **Appendix C**. In general, a 7 7/8-inch diameter pilot hole was drilled to the target depth. After reviewing the geophysical logs (discussed in

Section 2.3.3), a completion depth was selected and the borehole was then reamed with a 10 5/8-inch (9 7/8-inch in the case of TW-2A) bit. Each of the first three wells was plugged with drill cuttings to within 10 to 20 feet of the completion depth. The bottom of the hole was then tremie grouted with neat cement to the base of the planned well bottom. The fourth boring, TW-2A, was drilled and reamed to the base of the selected construction depth and plug back was not needed.

The well construction details for each location varied depending on the subsurface conditions encountered. A summary of construction information and sand zone intervals identified on geophysical logs is listed in **Table 2-3**. More detailed information may be found on well construction logs in **Appendix C**.

Table 2-3 Test Well Construction DetailsLaredo Aquifer Storage and Recovery Project

Monitoring Well	Total Depth Drilled (feet)	Plug Back Depth (feet)	'Sand Zone Intervals (feet)	Screen Material, Size, and Type	Screen Interval (feet)
TW-1	885	495	330-390; 440- 490	304 SS, 0.030-inch louver screen	330-390; 440-490
TW-2	800	460	276-312; 330- 358; 376-392; 406-420; 450- 500	Carbon steel, 0.030 & 0.040-inch louver screen	270-430
TW-3	914	630	446-458; 476- 492; 498-506; 532-572; 590- 604	Carbon steel, 0.040-inch louver screen	430-610
TW-2A	430	430	262-272; 276- 298; 316-324; 330-346; 392- 398	Schedule 80 PVC; 0.020-inch slotted pipe	260-300; 315-345; 390-410

Note: 1 Sand intervals identified from geophysical logs

Each of the first three wells was constructed with 6-inch steel casing and well screen (0.030 to 0.040 slot). Stainless steel was used on the first well and carbon steel on the latter two. The last well, TW-2A, was constructed of 4-inch PVC casing and 0.020 slotted well screen.

Two screen intervals were installed in the first well, TW-1. One screen interval was installed in wells TW-2 and TW-3. The entire assemblage of sand zones was screened in these later wells to investigate if the lower permeability units between the sand zones may yield water via secondary porosity (fractures). The potential for the fine sediments from the low permeability zones to pass through the screen was not thought to be significant based on the relative consolidation of the formation.

A fluid velocity log was run on well TW-2 to identify the most productive zones. Information from this log and other TW-2 geophysical logs (discussed below) was used to select rock coring intervals and the screen interval for observation well TW-2A. Based on these logs, TW-2A was screened in three distinct zones and rock coring was performed.

2.3.2 Rock Coring

Rock coring was performed at the Del Mar site during the construction of the fourth well, TW-2A. Core intervals were selected across stratigraphic zones that were identified from the geophysical logs run on the adjacent well, TW-2. The rock cores were obtained for laboratory analysis to further evaluate characteristics of potential ASR storage zones. A rock core sample from each of the three sand intervals encountered in the boring were submitted to Mineralogy, Inc., of Tulsa, Oklahoma, for the following analyses:

- Porosity, grain density, horizontal and vertical air permeability
- X-ray defraction
- Scanning electron microscopy
- Cation exchange capacity with leachate analysis
- Specific gravity
- Laser particle size distribution
- Acid residue

2.3.3 Geophysical Logging

Geophysical logs were run on mudded boreholes and cased wells by the TWDB and two separate subcontractors. A summary of the geophysical logs obtained is provided in **Table 2-4**. A complete copy of the logs run is provided in **Appendix D**.

Table 2-4 Laredo Geophysical Logging Summary
Laredo Aquifer Storage and Recovery Project

Well	Location	Depth Drilled	Date Logged	Geophysical Log Run and Operator
TW-1	McPherson	884	1/21/97	Resistivity, Spontaneous Potential (SP), Gamma Ray—TWDB
			4/16/97	Fluid Velocity, Fluid Resistivity, Temperature—TWDB
TW-2	Del Mar Storage Tank	800	2/20/97	Resistivity, SP, Gamma Ray—TWDB
			4/16/97	Fluid Resistivity and Temperature—TWDB
			7/26/97	Fluid Velocity, Fluid Resistivity and Gamma Ray—Century Geophysical
TW-3	East Corridor	914	3/25/97	Resistivity—TWDB
TW-2A	Del Mar Storage Tank	430	7/15/97	Resistivity, SP, Gamma Ray-Sigma Data

Immediately following completion of drilling and prior to well installation, mudded borehole geophysical logs were run to evaluate the site stratigraphy and occurrence of upper sand zone deposits. Within each mudded borehole, resistivity, spontaneous potential

(SP), gamma ray, and conductivity logs were run. Mudded borehole logs for wells TW-1, TW-2, and TW-3 were completed by the TWDB. A complete set of logs was not obtained for TW-3 due to equipment problems. Sigma Data of Pleasanton, Texas, logged the TW-2A borehole.

After completion of the first three wells, logging in the screened borehole was conducted to evaluate water producing zones and water quality. The TWDB ran fluid resistivity, temperature, and fluid velocity logs at TW-1 and TW-2. However, as a result of equipment problems, fluid velocity logs were only obtained at TW-1, and no logs were obtained at TW-3. Temperature and fluid resistivity logs were run at TW-1 and TW-2. Century Geophysical of Elko, Nevada, ran fluid velocity, resistivity, and gamma logs at TW-2.

2.3.4 Well Development

Following well installation, well development was performed to remove fine grained materials from the borehole and well casing. Typically, a mud cake forms within the boring during drilling, which tends to plug the formation. The mud cake is a vital part of drilling as it helps to minimize borehole collapse. However, after well installation, development is performed to remove the mud cake and native sediments that can pass through the well screen. During the investigation, development included several cycles of flushing the well with water and purging the well by airlift pumping. Development typically was performed during a 6 to 8-hour period and ended after relatively clear water was encountered.

2.3.5 Aquifer Testing

In the Step 1 report, existing water well records were reviewed to determine general pumping rates and aquifer characteristics. While a range of values was reported, data used to calculate these values were very limited and often considered unreliable. On the basis of this information, the field investigation sought to obtain additional aquifer information.

Multiple aquifer tests were performed on all three of the test wells installed during the investigation. The aquifer tests performed included step drawdown tests, and short and long-term constant rate pumping tests. The duration and chronology of aquifer testing is summarized in **Table 2-5**.

The tests were run using a 4-inch submersible pump and 2-inch discharge piping provided by the TWDB. Flow rates were measured with a standard water meter provided by the City of Laredo and were recorded manually. All water generated during the testing was directed to a sanitary sewer. For most of the tests, water level responses were measured automatically with a data logger and transducer. At the end of pumping, recovery measurements were also obtained during most tests.

The first three aquifer tests were run between 24 and 48 hours and included a step-pumping test at each location. In early May, additional step pumping tests were run at the TW-2 and TW-3 locations to evaluate the effects of redevelopment discussed later in this report. In mid July, following construction of an observation well (TW-2A) at the Del Mar site, a third test was run and water levels were obtained from both the pumping well (TW2) and TW-2A. Additional aquifer test data were obtained during the pumping and recovery phases of the January 1998 aquifer compatibility test at the Del Mar site.

Table 2-5 Aquifer Test Summary

Laredo Aquifer Storage and Recovery Project

Test Designation	Date Conducted	Pumping Well	Pumping Rate (constant rate)	Duration	Observation Well
McPherson	2/5/97	TW-1	50	40 hours	None
Del Mar	3/11/97	TW-2	50	42 hours	None
East Corridor	4/8/97	TW-3	54	24 hours	None
East Corridor	5/8/97	TW-3	54	13 hours	None
Del Mar	5/13/97	TW-2	68	5 hours	None
Del Mar	7/28/97	TW-2	40	8 hours	TW-2A
Del Mar	1/23/98	TW-2	54	7 Days	TW-2A

Note: The 1/23/98 Pump Test was actually conducted as part of the aquifer compatibility testing discussed in Section 2.3.9

2.3.6 Water Sampling

Groundwater samples were obtained throughout the project on both new and existing water wells. As discussed earlier, several samples were obtained in December and January from existing water wells located by the TWDB and City of Laredo. Additional samples were obtained by CH2M HILL and City of Laredo personnel following the construction of each new monitor well. All samples were collected through existing well appurtenances. Temporary submersible pumps were installed within the new monitor wells for this purpose. Prior to sampling, a minimum of three well volumes was purged during which time measurements were recorded for pH, temperature, and conductivity. Dissolved oxygen and oxygen redox potential measurements were also made on selected samples obtained near the end of the project. All samples were retained in laboratory containers and stored in coolers prior to submittal to the laboratory. Treatment plant water samples were also obtained from two different locations across the City to evaluate the quality and variability of water originating from the Jefferson Water Treatment plant. These samples were handled in a similar manner to the groundwater samples.

2.3.7 Weil Redevelopment

Between May 6 and May 8, 1997, well redevelopment activities were performed at TW-2 and TW-3 following the initial pump testing and groundwater sampling. The purpose of the redevelopment was to determine if well yields could be improved with additional development. Relatively low specific capacity values obtained during the initial pump tests and the accumulation of fine-grained materials in the wells TW-2 and TW-3 led to the belief that drilling mud used during the construction process had not been sufficiently removed from the borehole during initial development.

The redevelopment process included a three-step procedure. First, the well screen was flushed with clean water using a jetting tool, beginning from the base of the screen. After jetting with clean water, a sodium acid polyphosphate (SAP) solution was prepared at the

surface and injected through the jetting tool directly against the well screen. The SAP is used as mud dispersant to facilitate mud cake removal. Approximately two well volumes of SAP were injected into the screen zone. Clean water was added at the top of the well to maintain flow and carry the SAP solution into the well screen zone. Following a 12-hour period, the well was flushed with clean water and then airlifted for approximately 3 hours to remove the solution. Within one day after flushing, short duration aquifer tests were run at both locations to evaluate the effects of redevelopment. All water pumped to waste was directed to a sanitary sewer.

2.3.8 MFI and TSS Analyses

In order to assess the overall ability of the City of Laredo treated water to be injected into porous media, MFI tests were conducted. These tests are run by passing the test water through a 0.45-micron filter and measuring timed volumes of water through the filter. Times and volumes are recorded to identify the time and volume required to plug the filter. The filter is then weighed, the total suspended solids (TSS) of the test water calculated, and an MFI value calculated from the results. These values, the TSS and the MFI, are then compared to other ASR facilities and an assessment of the ability of the water to be injected into an aquifer determined. A comparison of the results to other sites can then also be used to yield an estimated potential clogging rate in the well. This clogging rate would represent the head buildup over time in the wellbore associated with injection. This rate is in addition to the head buildup associated with the aquifer hydraulics and wellbore losses calculated from pumping tests.

The MFI tests were run at several locations in the City of Laredo distribution system to assess the plugging potential of the treated water as a function of location in the distribution system. The testing was conducted at the Jefferson Street WTP to measure the plugging potential of the water immediately following treatment, and then at several distant locations in the distribution system to determine whether residence time in the pipelines may increase the plugging potential of the water. In addition to the testing conducted at the Jefferson Street WTP, tests were run at the East Corridor testing site, the Northwest Storage tank, and the Del Mar testing site.

2.3.9 Aquifer Compatibility Testing

In August 1997, all the information obtained from the testing to date, including analytical data obtained from previous groundwater sampling, rock coring, MFI, and TSS analysis, were reviewed to evaluate whether a full scale ASR system could be developed for the City. The results revealed some potential geochemical issues, but found no serious problems with the native groundwater or the quality of the City's treated water supply that might be detrimental to such a facility. Of overriding concern, however, was the very low aquifer transmissivity of the Laredo Formation. Low aquifer transmissivity results in low yielding wells, and substantially increases the risk of aquifer plugging from injection.

The results of the testing indicated most issues surrounding ASR implementation were satisfactory but that the aquifer transmissivity was low. For this reason, a small-scale aquifer compatibility test was conducted to directly measure the effects of injecting City of Laredo water into the Laredo Formation. The testing plan was developed to directly measure water quality changes and borehole hydraulic response to injection of the City water and subsequent recovery by pumping.

In preparation for the test, a Class V temporary injection permit was submitted to the TNRCC on behalf of the City and subsequently approved on November 3, 1997. In January 1998, the aquifer compatibility test was performed at well TW-2.

The testing had two specific objectives: to evaluate geochemical changes associated with the injection and subsequent removal of injected surface water and to evaluate aquifer hydraulics associated with these activities. The testing was initiated with a four-hour shake down test to assess operation of the injection and recovery system as a precursor to a longer, two-week injection and recovery test.

If the results of this phase of the investigation find the feasibility of ASR implementation high, the next step will be to construct an ASR prototype facility and actually test the ASR concept at full scale. This type of test is usually conducted as a final step in ASR feasibility testing and the testing results in finalizing the design parameters for a full scale ASR facility that may include several wells and sites.

Results

3.1 Aquifer Characteristics

The Step 1 report contains an overview of the regional geology in the Laredo area. The following section discusses specifically the Laredo Formation, which was the focus of the second phase of the investigation.

3.1.1 Aquifer Setting and Distribution

The Laredo Formation was deposited within a transitional deltaic and marine system. The Formation consists of interbedded sands, sandstones, clays, shale, and siltstone. The coarsest materials encountered within the Formation are likely to have originated from southeasterly flowing rivers that were subsequently reworked by wave action and redeposited parallel to the ancient shoreline.

The Formation is present at the surface in Laredo and outcrops in a north-south trending band that occurs between Sombrerito Creek located northwest of the City, and Chacon Creek, located east of the City. The limits of outcrop are shown on Figure 3-1. The thickness of the Formation ranges from 620 feet at the outcrop to more than 875 feet in wells located east of the outcrop. Figures 3-2 and 3-3 are geophysical profiles that depict the distribution of the Laredo Formation in the subsurface beneath Laredo. The location of the profiles is shown in Figure 3-1. The profiles were generated from resistivity logs obtained during the geophysical log review discussed in the previous section. High resistivity layers generally correlate with higher permeability layers such as sand. Low permeability sediments such as clays and silts are inferred from low resistivity responses. The west to east profile shown in Figure 3-2 illustrates that the formation dips and thickens to the east. There are few significant changes shown on the north-south profile.

The depth to water at most locations is between 100 and 120 feet below ground surface (bgs). The principal water bearing units within the formation are interbedded sands and sandstone layers that are separated by clay, shale, silt, and siltstone. Unconsolidated materials generally occur only within the upper 100 feet of the formation. The geophysical profiles indicate that many of the stratigraphic layers can be correlated across great distances in Laredo.

The geophysical evaluation summarized in **Appendix A** identified an upper sand zone within the Formation that contains the greatest concentration and thickness of waterbearing sandstone layers (**Figure 3-2**). The saturated upper sand zone appears to occur within a relatively narrow, north-south trending band that encompasses most of central and eastern Laredo. The upper sand zone is approximately 200 to 250 feet thick across most of eastern Laredo, which is where the complete section is present (**Figure 3-2**). In western Laredo, the upper sand zone is present at the surface and is only partially saturated. While the entire formation thickens to the east and southeast, in this direction it also becomes finer grained and contains fewer and thinner sand layers.

There are approximately 3 to 5 individual sand intervals that are the predominant waterbearing units in the upper sand zone. The resistivity of these intervals is generally between 10 and 20 ohms, which is relatively low as compared with coarser and more permeable waterbearing units typically used for water resource development. The sand layers range in thickness from 15 to 60 feet. Sand layer thicknesses identified on geophysical logs from test borings are summarized in **Table 2-3** and were used as the basis for selection of screen interval in the test well. The total cumulative thickness of sand layers within the upper sand zone ranges from about 140 to 190 feet. Additional information on the thickness and distribution of the upper sand zone may be found in **Appendix A, Figure A-1**.

3.1.2 Aquifer Properties

3.1.2.1 Aquifer Test Results

Several aquifer tests were performed to evaluate specific aquifer properties, principally the aquifer transmissivity. Transmissivity was calculated as a function of time and the drawdown measured in the well during the pumping. All test data was plotted as time versus drawdown on semi-log paper. Time versus drawdown graphs for representative well tests from locations TW-1, TW-2, TW-2A, and TW-3 are shown in Figures 3-4 through 3-7. Additional aquifer test plots from all the tests may be found in Appendix E.

Where multiple pump tests were performed at a single well (TW-2 and TW-3), values for transmissivity were estimated by generating a theoretical drawdown curve that was matched to the actual drawdown response. The theoretical curve was generated for the pumping well using the Theis equation modified to include a well loss term (CQ²). The relationship is as follows:

```
s = Q W(u)/4πtT + CQ²

Where:

s = drawdown (feet)

Q = discharge (gpm)

W(u) = well function, where u = r²S/4tT and r=well radius and S = Storage coefficient

t = time (minutes)

T = aquifer transmissivity (ft²/day)

C = well loss coefficient
```

The value for storage coefficient was calculated from the July 1997 aquifer test at TW-2, which utilized an observation well. The storage coefficient for TW-3 calculations was estimated from the TW-2 test. Because T and S are aquifer constants that should not vary between tests at the same well location and Q is measured directly during pumping, well losses are the only other variable that can define changes in the drawdown observed between tests in the same well. Additional discussion of well losses is provided in the following section.

Transmissivity values were also evaluated using the Cooper-Jacob straight-line method. In

general, a good match was achieved for each of the drawdown curves analyzed using best fit values of aquifer properties and the well loss coefficient and the Cooper-Jacob method. Deviations from the straight line were uncommon but where present are thought to have resulted from flow rates that varied slightly during testing. This approach proved to be a more reliable and prudent method of analyzing the data as compared with calculating discrete values of transmissivity and then averaging the results. There were no boundary conditions identified during any of the aquifer tests performed.

A summary of the values derived for transmissivity and storage coefficient is summarized in Table 3-1. As shown, the calculated transmissivities range from 141 to 195 square feet per day (ft 2 /day) in the pumping wells (TW-1, TW-2, and TW-3). All the calculated transmissivity values are consistent with regional information reported in the Step 1 investigation. The calculated storage coefficient from the July 1997 test performed at TW-2 is approximately 9 x 10^5 , indicating confined aquifer conditions.

Table 3-1 Summary of Aquifer Test Results

Laredo Aquifer Storage and Recovery Project

Well Location	Observation Well	Transmissivity (ft²/day)	Storage Coefficient
TW-1	N/A	141	N/A
TW-2	TW-2A	168	0.0000904
TW-3	N/A	195	N/A

3.1.2.2 Step Test Analysis

Step pumping tests were performed as part of the aquifer testing to evaluate the components of wellbore and other head losses. Initially, there was speculation that the low specific capacities calculated from initial tests at each test well were a reflection of inadequate well development. Following the preliminary development and initial pump tests, both TW-2 and TW-3 were redeveloped (Section 2.3.7). After redevelopment, a second step test was conducted at both wells for the purpose of evaluating changes in the well loss associated with redevelopment. TW-1 was not redeveloped because of concerns regarding the well construction. During placement of the gravel pack in this well, part of the formation collapsed in the upper portions of the well screen.

The drawdown data from testing before and after redevelopment were analyzed using the Hantush-Bierschenk method of determining well losses. The method involves calculation of both well losses and aquifer losses that are based on measured changes in the drawdown that occurs with different flow rates. Step test graphs and well efficiency calculations that include evaluation of well losses are found in **Appendix E**. Calculated well losses and well loss coefficients for TW-2 and TW-3 before and after redevelopment are shown in **Table 3-2**. The well losses in both wells decreased following development, reflecting improvement in well efficiencies, particularly in the case of TW-2. Only a slight improvement was observed in TW-3.

Table 3-2 Step Pumping Test Evaluation

Laredo Aquifer Storage and Recovery Project

Well Location	Pre-redevelopment	Well Losses	Post-redevelopmen	t Well Losses
	С	CQ²	С	CQ ²
TW-2	0.0137	34	0.0044	11
TW-3	0.0062	16	0.0047	12

Note: Q = Discharge

C = Well Loss Coefficient

CQ2 = Well Loss

3.1.2.3 Spatial Distribution of Specific Capacity

Specific capacity calculations were performed using the data obtained from the aquifer tests and compared with specific capacity data from existing water wells (Section 2.1). Specific capacity is a parameter used to assess the general condition and permeability of a well. It is a measure of the quantity of water (gpm) obtained from a well for each foot of drawdown during pumping. The distribution of specific capacity measurements is shown on Figure 3-8. In general, very low specific capacities occur in the Laredo area and there does not appear to be a strong trend to the reported values. Higher specific capacity values generally occur in the central and northeastern areas of the City where upper sand zone deposits may be thicker and/or more permeable. The specific capacity values calculated after 100 minutes of pumping for test wells TW-1, TW-2, and TW-3 were 0.36, 0.72, and 0.82 gpm/ft, respectively. Values around 1 gpm/ft appear typical for the Laredo area.

There are three wells screened in the Laredo Formation for which specific capacity values of one or greater were reported on well completion logs on file with the TNRCC. These wells include 85-21-7(1) (Union Pacific), 85-29-102 (Laredo Country Club), and 85-29-709 (Mercy Hospital) and the reported specific capacities are 2.65, 2.8, and 1.05 gpm/ft, respectively. It is unclear whether the reported values reflect more permeable deposits in the area of the wells. Of the three wells, only the Union Pacific well was not identified during the preliminary well survey. All three wells were installed by Woods Drilling using the air rotary drilling method and are constructed with a minimum seven-inch ID casing. A limited drawdown test was performed at the Country Club well in 1997 by City and TWDB personnel and a value of about 1.5 gpm per foot of drawdown was estimated. This suggests that either the original test was inaccurate or the well has fouled since construction. A more extensive pump test was attempted at this well but downhole well appurtenances limited access to monitoring equipment.

3.1.3 Groundwater Quality

Groundwater analytical data from existing wells are presented in **Table 3-3**. Three of the locations sampled, including the Unitec well, well 85-29-301, and well 85-37-204, were determined not to be screened in the Laredo Formation and were not consider further in this evaluation. Test well analytical data is provided in **Table 3-4**. Laboratory analytical data reports can be found in **Appendix F**. Test parameters generally included major anions and cations and general water quality parameters. Metals were also analyzed at some locations.

Table 3-3 Groundwater Analytical Results Existing Water Wells Laredo Aquifer Storage and Recovery Project

	Lab ID	AQ-1	AQ-2	AQ-3	AQ-4	AQ-5	AQ-6	AQ-7	AQ-8	AQ-12	AQ-13	AQ-14	* LCC	* UNITEC
	Field ID &	85-20-901	85-29-708	85-37-404	85-37-406	85-29-301	85-29-102	85-29-401	85-29-706	85-29-709	85-29-804	85-37-204	85-29-102	Uniroyal Tire
	Location	(Laredo	(Catholic		(Not in	(Killam	(Laredo			(Mercy	(Lake Well)	(Not in	Country	Track (Not in
		Redi Mix)	Cemetery)		Laredo FM)	Cattle Co)	Country	ļ	1	Well)	}	Laredo FM)	Club	Laredo FM)
					1		Club)							
								İ						
	Date Collected	12/4/96	12/4/96	12/5/96	12/3/96	12/3/96	12/3/96	12/4/96	12/4/96	1/21/97	1/21/97	1/30/97	7/13/97	7/13/97
Parameter	Units													
Temperature	С	27.5	25.3	27.4	27.3	27.6	29.4	27.3	27	27.2	28.9	15.6	38	49
TDS	mg/l	2065	5163	2243	3410	3465	1785	1465	1420	1366	2200	1654	1552	2164
pΗ	S.U.	7.47	7.48	7.38	7.43	8.7	8.92	8.85	8.74	8.48	8.13	7.48	8.5	8
Field pH	S.U.	7.3	7.59	7.3	7.18	8.34	8.59	8.84	8.7	8.72	NA	7.7	8.63	7.92
Cond.	S.U.	2970	7070	3200	4510	4980	2800	2170	2290	2080	4030	3000	3250	4730
Field Cond	S.U.		7110		4505	5050	2830	2210	2340	NA.	4020	2730	3314	3745
Pheno Alk	mg/l												8.5	20
Alkalinity	mg/l	268	244	328	352	280	220	276	340	325	970	500	244	1196
Hardness	mg/l	389	323	322	271	103	2.2	24	9.23	11	10.3	165	20	20
Dissolved Oxygen (%)	%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	10.7	21.1
ORP	millivolts	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA_	NA	58.6	504
Nitrogen (TKN)	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA		1.2
Organic Carbon	mg/l	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	2
Silica Dioxide	mg/l	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.5	
Cations														
Aluminum	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	0.07	
Iron	mg/l	NA	NA	NA	NA	NA	NA	NΑ	NA	NA	NA	NA		
Manganese	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA		
Calcium	mg/l	88	83	76	107	10	3.19	1.69	2.22	2.4	2.5	37	6	6
Sodium	mg/l	422	982	521	892	695	349	445	512	473	956	639	618	422
Potassium	mg/l	7.096	39	5.52	7.56	1.63	0.9	0.67	1.28	1.5	2.1	6.3	1	5
Magnesium	mg/l	41	28	32	67	11	0.31	0.16	0.9	0.6	1.3	18	0.09	0.9725
Lithium	mg/t	0.117	0.073		0.14	0.1	0.03	0.02	0.02	0.06	0.11	0.2		0.18
Anions														
Bromide	mg/l	0.924	1.74	0.64	1.03	1.08	1.11	0.78	0.74	0	1.3	5.1	1.846	3.275
Chloride	mg/l	315	743	243	356	358	397	378	271	278	482	280	495	943
Sulfate	mg/l	876	2830	1027	1801	1855	521	329	341	472	629	541	590	
Floride	rng/1	2.629	5.84	3.23	4.6	4.62	2.35	0.83	0.87	0.7	1.7	1.9	1.7	2.9
Phosphate	mg/l					<u> </u>					0			
Ammonium	mg/l				l			L						
Mitrate	mg/l	0.49						L						
Nitrite	mg/i													
Bicarbonate	mg/l	326.7	297	399	429.2	321.9	234.1	278.0	365.8	379.2	1134	610		
Carbonate	mg/l		0	0		18.8	32.9	56.5	47.1	49.4	24	0		
Mass Balance	%	-10.7	-25.8	-8.9	-4.7	-28.0	-27.3	-10.4	0.3	-10.3	-11.7	3.3	-7.8	-7.8

Note:

NA = Not Analyzed

^{*} Samples collected for metals analysis were field filtered

Table 3-4
Groundwater Analytical Results Test Wells
Laredo Aquifer Storage and Recovery Project

	Leb ID	AQ-15	AQ-16	AQ-17	AQ-18	AQ-19	AQ-20	AQ-21	AQ-22	AQ-23	AQ-24	AQ-50	AQ-51	AQ-52	AQ-53	*TW-2
	Fleid ID & Location	TW-1 (McPherson)	TW-1	TW-1	TW-1	TW-1	TW-1	TW-1	TW-2 (Del Mar)	TW-2	TW-2	TW-2	TW-2	TW-3	TW-3 (East Corridor)	Same
	Date Collected	2/6/97	2/6/97	2/6/97	2/7/97	2/7/97	2/7/97	2/7/97	3/8/97	3/9/97	3/9/97	3/9/97	3/10/97	4/9/97	4/11/97	7/28/97
Parameter	Units															
Temperature	C	26.2	25	25.2	24.1	25.2	26.8	NA	26.3	27.9	27.8	28	26.8	28.9	29.1	NA
TDS	mg/l	1752	1282	1224	1204	1240	1300	1764	1660	1692	1670	1674	1670	1470	1266	1440
pH	S.U.	8.95	9	8.79	8.83	8.82	8.88	8.58	8.6	8.6	8.8	8.7	8.8	8.7	8.5	8.8
Field pH	S.U.	9.13	9.02	8.92	9	8.98	8.98	na	8.76	8.77	8.8	8.74	8.81	8.69	8.75	8.91
Cond.	S.U.	2890	2880	2900	2900	2900	2910	2930	2830	2800	2800	2820	2820	2390	2060	2550
Field Cond	S.U.	3000	2995	3250	3400	3250	3050	na	1900	2750	2800	2700	2700	2610	2300	2401
Pheno Alk	mg/l	27	20	18	18	25	15	16	16	15	14	14	13	19	20	17
Alkalinity	mg/l	185	184	180	181	180	182	182	215	220	219	219	218	298	302	228
Hardness	mg/l	21	20	19	18		17	17	40	24	32	32	22	40	18	15
Dissolved Oxygen (%)	%	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	114.1
ORP	millivolts	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	167.1
Nitrogen (TKN)	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Organic Carbon	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1
Silica Dioxide	mg/l	NA NA	ÑA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	12.5
Cations																
Aluminum	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NÄ	NA	NA	NA
Iron	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Manganese	mg/l	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Calcium	mg/l	7.61	6.72	6.2	5.74	5.71	5.48	5.1	10	7	6	6	5	9.6	3	3
Sodium	mg/l	736	739	718	712	715	703	708	557	581	553	514	599	488	422	501
Potassium	mg/l	2.36	1.98	1.76	1.65	1.67	1.7	1.54	2	2	2	2	1	1	1	2
Magnesium	mg/l	0.194	0.308	0.38	0.47	0.524	0.871	0.59	2	1.38	1.12	1	1.03	3.88	1.9	0.49
Lithium	mg/l	0.06														0.03
Anions																
Bromide	mg/l	0.924	1.15	1.17	1.24	1.13	1.23	1.27	1.46	1.44	1.46	1.48	1.46	1.06	0.27	1.43
Chloride	mg/l	469	481	426	413	549	549	489	429	425	425	425	418	317	259	357.1
Sulfate	mg/l	616	593	609	605	614	593	631	491	484	484	483	476	438	343	**
Floride	mg/l	2.4	2.2	2.22	2.26	2.2	2.34	2.3								
Phosphate	mg/l															
Ammonium	mg/l															
Nitrate	mg/l															
Nitrite	mg/l															
Bicarbonate	mg/l	159.7171422	175.6	175.6	176.8	158.5	178.0	182.9	262.1	268.2	267.0	267.0	265.8	386.5	388.9	
Carbonate	mg/l	63.52941176	47.1	43.9	42.4	58.8	35.3	37.6	22.4	21.2	20.0	20.0	18.8	26.8	28.2	
	1															
Mass Balance	%	2.45	3.28	4.03	4.41	-2.31	-1.74	-0.29	-4.95	-3.08	-5.60	-9.16	-1.104	-7.05	-7.82	-7.82
Notes																

Note

NA = Not Analyzed

^{*} Samples collected for metals analysis were field filtered

[&]quot; Sulfate value is erroneous

Data quality and control included an evaluation of holding times as well as mass balance calculations for the major anions and cations. Ideally, the difference in the concentrations of cations and anions (expressed in milli equivalents) should be in the range of 10 percent or less. Laboratory data quality problems were identified during the initial analysis of samples and are reflected in the mass balance calculations included in **Table 3-3**. The mass balances for samples AQ-2, AQ-5, and AQ-6 were in excess of 20 percent. Laboratory staff indicated that the holding times for several of the original samples (AQ-1 through AQ-8) were exceeded in the laboratory. As a result, data from these locations need to be considered estimates.

Percentages of various cations and anions are summarized in Table 3-5 and are plotted in a Piper diagram shown in Figure 3-9. All the groundwater samples have sodium as the dominant cation but the relative proportion of the anions varies between bicarbonate, sulfate, and chloride. Three water types are shown on Figure 3-9 including a sulfate-dominated water chemistry, (type "A"), a mixed water chemistry (type "B"), and a mixed chloride-sulfate type (type "C"). Figure 3-10 shows the spatial distribution of pH, and the anions chloride, sulfate, and bicarbonate. Along the western margin of the City, type A groundwater is present that is relatively low in pH and high in TDS and sulfate. In the north central areas, type C water is present. Wells screened in this area have an intermediate TDS (1,670 to 1,785 mg/l) and a high pH ranging from 8.58 to 8.92. The reason for the high pH is due to the relatively low concentration of calcium. In the central to east-central areas of the city, groundwater is mixed with relatively equal amounts of bicarbonate, sulfate, and chloride. Wells in this area have an intermediate TDS (1,266 to 2,200 mg/l) and a high pH ranging from 8.13 to 8.85.

Table 3-5
Percentages of Various Anions and Cations
Laredo Aquifer Storage and Recovery Project

Location	Sample ID	%Calcium	%Magnesium	%Sodium and Potassium	% Bicarbonate and Carbonate	%Chloride	%Sulfate
85-20-901	AQ-1	16.69	12.83	70.48	16.49	27.36	56.15
85-29-708	AQ-2	4.51	2.51	92.98	5.74	24.73	69.52
85-37-404	AQ-3	7.33	5.09	87.58	18.80	19.71	61.48
85-37-406	AQ-4	6.04	6.23	87.73	12.89	18.40	68.71
85-29-706	AQ-8	0.25	0.17	99.59	33.90	34.27	31.83
85-29-401	AQ-7	0.22	0.03	99.75	26.88	44.52	28.60
85-29-301	AQ-5	0.82	0.13	99.05	10.81	18.49	70.70
85-29-102	AQ-6	0.52	0.08	99.40	17.79	41.76	40.45
Del Mar Storage Tank				· 			
(surface water)	Del Mar	45.44	9.83	44.73	23.06	37.70	39.24
85-29-804	AQ-13	0.15	0.13	99.72	36.66	25.71	37.63
85-29-709	AQ-12	0.29	0.12	99.59	30.77	30.69	38.54
TW-1	AQ-21	0.82	0.16	99.03	13.64	44.24	42.13
TW-2	AQ-52	1.82	1.45	96.73	28.58	35.36	36.06
TW-3	AQ-53	0.80	0.42	98.78	33.61	33.57	32.81

3.1.4 Aguifer Characteristics at the Del Mar Test Site

Following preliminary testing at each of the three test sites, the Del Mar site was selected for additional testing, which included geophysical logging, a second monitor well construction, rock coring, and eventually, a limited aquifer compatibility test. The selection was based on factors such as security and accessibility as well as its location relative to service areas considered most appropriate for ASR applications.

Based on the geophysical logs run in well TW-2, the upper sand zone was determined to occur between 270 and 500 feet bgs. Within this zone, prominent sand units were identified in five different depth intervals (**Table 2-3**). The three shallowest zones occurring between 270 and 420 feet bgs appeared to contain the greatest thickness and highest permeability layers relative to the deeper units. As result, TW-2 was subsequently screened across the entire 165-foot interval encompassing the three sand units.

Fluid velocity logs were run in TW-2 to evaluate both the occurrence of distinct fractures and the relative permeability of the sand zones occurring within the screen zone. The logs are included in **Appendix D**, **Attachment D-2**, and show flow contribution from four primary zones: 290-306, 330-360, 373-386, and 410-420 feet bgs. The 330-360 foot interval appears to be contributing the most flow during pumping. Similar flow contributions were observed from both the 330-360 and 410-420 foot zones, suggesting that they have similar permeabilities. This was later confirmed by the core permeability tests performed on TW-2A samples from these intervals (see below).

Rock cores from TW-2A suggest groundwater flow occurs principally within the sand bearing units. Few secondary porosity features (fractures, partings, bedding planes, vugs) were observed within the lower permeability units (siltstone and shale) and where present, they showed little evidence of groundwater flow. Within the sandstone units, groundwater flow is believed to occur primarily with the primary rock porosity as opposed to secondary porosity features. However, it was not possible to directly observe the presence of secondary porosity features within many of the more friable sandstone cores. These cores were often broken, primarily along bedding planes, and it is likely that many of the observed fractures were induced by drilling and are not necessarily naturally occurring.

Field and laboratory examination of rock cores obtained from test well TW-2A reveal that the primary waterbearing units consist of relatively fine-grained, friable sandstone. Additional rock core descriptions may be found in Appendix C. Rock core samples were obtained for laboratory analysis from three representative sand zones (292-293.4, 330-330.4, and 400.65-401.9) and were determined to be relatively similar with respect to mineralogy, texture, and reservoir quality. The mineralogic content of these cores is approximately 89 percent quartz, 9 percent clay minerals, and about 2 percent feldspar minerals. The bulk of the clay is present as glauconite pellets, and sedimentary mudstone and shale fragments. A mixed layer illite/smectite and relatively minor volumes of chlorite and illite dominate the clay mineralogy. A helium porosity of approximately 30 percent was measured in each core and the horizontal permeability of the cores ranged from 631 to 809 millidarcies. The laboratory identified minor occurrences of pore throats filled or "clogged" with clay materials. The laboratory determined that some clays were susceptible to expansion but suggested that under a relatively constant hydration state and stable salinity values, formation damage caused by expansion of clays would be minor. Additional information regarding the laboratory rock core analyses may be found in Appendix G.

Three aquifer tests were performed at the Del Mar site including two single well, constant rate tests and one constant rate test utilizing TW-2A as an observation well. As discussed earlier, specific capacity values were calculated for each test and compared to evaluate changes in well losses. **Table 3-6** is a comparison of the values for specific capacity and well loss coefficients.

Table 3-6 Comparison of Aquifer Test Properties, Del Mar Test Site Laredo Aquifer Storage and Recovery Project, Laredo, TX

Date	TW-2 Pumping Rate (gallons per minute)	Specific Capacity (gallons per foot of drawdown)	Well Loss Coefficient	
March 1997	49	0.50	0.0137	
May 1997 (Constant Rate test)	68	0.72	0.0044	
July 1997	54	0.59	0.008	

As shown, there was an increase in the specific capacity following the redevelopment activities that occurred in May. The specific capacity subsequently fell during the period when the well was idle. The reason for the drop in specific capacity following development is unknown. However, the change may be the result of chemical precipitation caused by the addition of the surface water during development, and possibly bacteria growth within the well screen.

The July 1997 groundwater from well TW-2 (**Table 3-4**) contains a significantly lower TDS (1440 mg/l) than the average of five analyses from samples collected in March 1997 (1673 mg/l) and the pH is slightly higher (8.91 vs. 8.78). The groundwater is a sodium-chloride-sulfate water chemistry type and does not change with the change in TDS. The implication of the difference in TDS is simply dilution not chemical reaction. The groundwater is under moderately oxidizing conditions with an Eh (the oxidation-reduction potential of water) of 367 millivolts (mv). The low iron and non-detected manganese concentrations confirm the oxidized condition of the aquifer.

The total organic carbon (TOC) at the Del Mar site is about average for groundwater, as is the nitrate, but the ammonium and organic forms of nitrogen are slightly higher than the average groundwater. Normally, the nitrate (oxidized) form of nitrogen would dominate the nitrogen speciation under these oxidizing conditions. The alkaline pH coupled with these forms of nitrogen suggest a relatively healthy, natural, aerobic microbial population in the aquifer.

3.2 Surface Water Characteristics

Surface water quality was evaluated through laboratory analysis and field measurements.

3.2.1 Modified Fouling Index Results

Summary results of the MFI tests are presented in **Table 3-7**. Complete results are included in Appendix H. The results indicate the plugging potential of the treated City of Laredo water is relatively low and that the potential for plugging did not increase with distance from the Jefferson Street WTP.

Table 3-7 MFI Test Results
Laredo Aguifer Storage and Recovery Project, Laredo, TX

Testing Site	Average MFI Value	Average TSS (mg/l)
Jefferson Street WTP	3.41	1.35
East Corridor Site	2.39	1.19
Northwest Storage Tank	2.66	1.01
Del Mar Testing Site	3.86	0.69

The above MFI values indicate that with an aquifer transmissivity in the range of 150 to 200 square feet per day (ft^2 /day), an annual clogging rate of 4 to 6 feet would be expected. This value is based on a comparison of MFI values at several ASR sites with varying transmissivities. However, the transmissivities at these other sites are all much higher than those reported in Laredo. The value can be interpreted to imply that in a 6-inch well with 160 feet of screen recharging at about 33 gpm, an increase in water level in the well due to clogging of the screen should only be about 4 to 6 feet during a one year injection duration.

3.2.2 Laboratory Analytical Results

Surface water samples were obtained from the Jefferson Treatment Plant and the Del Mar Storage Tank area. These results are presented in **Table 3-8**. The surface water quality is characterized as sodium-sulfate water chemistry. However, several distribution system water samples were obtained during the aquifer compatibility test. These samples were analyzed for similar constituents and also included iron and manganese. The results of testing performed during the compatibility test are discussed later in this section.

3.3 Aquifer Compatibility Test Results

3.3.1 Testing Methodology and Overview

The aquifer compatibility testing was conducted at the Del Mar site using the two test wells, TW-2 and TW-2A, discussed previously. Well TW-2 was selected as the test well in which water would be recharged and recovered and well TW-2A was selected as the monitor well in which aquifer water levels would be monitored. Well TW-2 was selected for the recharge and recovery testing primarily because of its size, a 6-inch diameter compared to the 4-inch diameter of well TW-2A.

A temporary piping setup was constructed at well TW-2 that conveyed water from existing onsite piping through a 2-inch fire hose to well TW-2. The source of the water was the elevated storage tank on the Del Mar site, although the connection point was an existing buried 2-inch pipe near an abandoned treatment vessel. Temporary piping was also installed to convey the recovered water to an onsite sanitary sewer.

Table 3-8 Surface Water Analytical Data Laredo Aquifer Storage and Recovery Project

	Lab ID	* JEFFERSON Treat, Plant	* DEL MAR Treat. Plant	
	Date Collected	7/16/97	7/15/97	
Parameter	Units			
TDS	mg/l	516	NA	
pH	S.U.	8.18	NA NA	
Field pH	S.U.	8.75	7.21	
Cond.	S.U.	1093	NA NA	
Field Cond	S.U.	1075	1109	
Pheno Alk	mg/l	1	NA	
Alkalinity	mg/l	101	NA	
Hardness	mg/l	266	262	
Dissolved Oxygen (%)	%	109.3	88.9	
ORP	millivolts	345.9	403.2	
Nitrogen (TKN)	mg/l	3.4		
Organic Carbon	mg/l	5	2	
Silica Dioxide	mg/l	9.5	8.3	
Cations				
Aluminum	mg/l	0.35	0.18	
Iron	mg/l			
Manganese	mg/l			
Calcium	mg/l	78	NA	
Sodium	mg/l	121	119	
Potassium	mg/l	4	4	
Magnesium	mg/l	20.9	21.1	
Lithium	mg/l			
Anions				
Bromide	mg/l	0.128	1.37	
Chloride	mg/l	141	137	
Sulfate	mg/l	179	Error, bad data	
Floride	mg/i	0.724		
Phosphate	mg/l			
Ammonium	mg/l		0.44	
Nitrate	mg/l			
Nitrite	mg/l			
Bicarbonate	mg/l			
Carbonate	mg/l			
Mass Balance	%	-7.82	-7.82	

NA Not Analyzed

Well TW-2 was equipped with a 4-inch submersible pump, 2-inch drop pipe, and 2-inch above ground piping that allowed water to be injected into and pumped from the well. The check valve was removed from the pump body to allow water to be injected back through the pump during the recharge portion of the testing. Preliminary calculations and testing of the pump before installation into the well indicated a recharge rate back through the pump of approximately 25 gpm should be possible. In order to inject at higher rates into the well, a 1-inch injection tube was also installed in the well next to the pump. Preliminary calculations indicated that an additional 33 gpm could be injected through the injection tube and a combined injection rate of up to 50 gpm may be possible with the piping configuration installed. It is important to note that the injection rate into the well is dependent on both the system pressures delivered to the well, and the water level in the well. Both of these variables were expected to change during the testing and this variability had to be considered in selecting the target recharge rate.

The aquifer compatibility test was conducted at the Del Mar site beginning January 14, 1998, and ran through January 30, 1998. The test included a preliminary, or shakedown, test to check the operation of the equipment. The shakedown test consisted of recharging water into the aquifer through the pump and injection tubes for a short period of time, followed by pumping the well. The recharge portion of the shakedown testing was conducted by slowly increasing the injection rate while monitoring well water levels, flow rates, and line pressures. The intent of the test was to establish the performance range and limitations of the testing configuration. The recovery portion of the shakedown test was conducted in a similar fashion, with the well pumping rates varied to establish the performance range of the pump and piping configuration.

The shakedown testing indicated a maximum recharge rate of 30 gpm was possible through the pump and 26 gpm through the injection tube. A maximum combined rate of 52 gpm was measured with both recharge through the pump and injection pipe. These rates were measured with a depth to water level in well TW-2 of about 120 feet bgs. During the longer-term test, the water level in the well was expected to rise and the maximum possible recharge rate would decrease. Based on this fact and the shakedown test results, a target long-term recharge rate of 30 gpm was selected for the next test.

The pump installed in well TW-2 was tested during the shakedown test and pumping rates from 54 to 60 gpm were observed possible. The pump had the ability to pump against higher total heads than necessary for this test and the low rate possible from the pump required substantial throttling of the pumped flows. The low pumping rate is the result of throttling the pumped flows to a piping pressure of 100 psi. This pressure was considered the maximum piping pressure for the configuration installed.

Following the shakedown test, potable water from the City of Laredo distribution system was recharged into well TW-2 followed by recovery of the water by pumping the well. Once during the recharge portion of the test, recharge was shut off and the well was backflushed by pumping. A cumulative summary of the water injected versus recovered during the test is provided in **Figure 3-11**. A summary of the volumes and rates used during the testing is presented in **Table 3-9** below.

Table 3-9, Aquifer Compatibility Testing Summary Laredo Aquifer Storage and Recovery Project, Laredo, TX

Test Component	Volume Recharged	Volume Recovered	Rate	Duration
	(gallons)	(gallons)	(gpm)	(days:hours)
Shakedown Test	~3,600	5,600	variable	4 hours
Recharge	287,848	0	28	7 days 2 hours
Backflush	0	1,950	65	0.45 hours
Recovery	0	513,655	52	6 days 22 hours

During the test, water levels were monitored in both the test well, TW-2, and the onsite monitor well, TW-2A. The water level response observed in these wells is presented in Figure 3-12. Also during the testing, the water quality of the water recharged and recovered from well TW-2 was monitored regularly.

The water quality-monitoring program included two types of water sampling analyses. These were defined as field and laboratory analyses. Field samples were samples analyzed in the field using a sealed flow through sampling cell and field water quality instruments. Laboratory analyses were samples taken to the laboratory for different suites of parameters. Two types of laboratory analyses were performed, type A and type B. Type B parameters were collected daily whereas type A parameters were collected less frequently. The suite of analyses for each type of sample and the sampling schedule is presented in **Tables 3-10** and **3-11** below.

Table 3-10, Sampling Suite of Analyses
Laredo Aquifer Storage and Recovery Project, Laredo, TX

Field Analyses	Laboratory Analyses Type A	Laboratory Analyse Type B	
Ph	pH	рН	
Conductivity	Conductivity	Conductivity	
Temperature	Chloride	Chloride	
Oxidation Red. Potential	Alkalinity	Alkalinity	
	Total Hardness	Total Hardness	
	Turbidity	Turbidity	
	Calcium	Sulfate	
	TDS	Bicarbonate	
	Sulfate		
	Bicarbonate		
	Magnesium		
	Sodium		
	Iron		
	Manganese		

Table 3-11, Sampling Schedule

Laredo Aquifer Storage and Recovery Project, Laredo, TX

Test	Sample Type	Frequency
Shakedown Test		
	Field	3 during injection, 4 during recovery
	Type A Laboratory	2 during injection, 3 during recovery
Cycle No. 1		
	Field	Daily
	Type B Laboratory	Daily
	Type A Laboratory	Every other day

3.3.2 Discussion of Test Results

3.3.2.1 Aquifer Hydraulics

Prior to the aquifer compatibility testing, three pumping tests were conducted on well TW-2. These tests were presented in the previous section discussing aquifer testing and were used to establish the baseline characteristics of TW-2 and the Laredo aquifer at the Del Mar site. As discussed in the previous section, the first aquifer test on TW-2 was conducted following its construction during March 1997. The next test was conducted following redevelopment of well TW-2 during May 1997. Both the March and May 1997 tests were single well tests utilizing only the pumping well for water level data. Finally, in July 1997, monitor well TW-2A was constructed at the site following coring activities and the third pumping test was conducted. The July 1997 test utilized the new monitor well for water level measurement.

The baseline characteristics of well TW-2 and the aquifer in the vicinity of the Del Mar site were used to compare the water level response observed during the aquifer compatibility test. Because the shakedown portion of the testing was run at varying rates of different durations, this part of the test was not hydraulically analyzed. The baseline well and aquifer parameters are listed below:

Transmissivity 168 ft²/day

Storage Coefficient 0.000904

Well Loss Coefficient 0.008

The drawup observed in wells TW-2 and TW-2A during the recharge portion of the testing was compared to the drawup calculated from the above baseline parameters. The results are shown in **Figure 3-12**.

As seen in **Figure 3-12**, the water level rise in monitor well TW-2A matches fairly well with that calculated from the baseline parameters. It was expected that approximately 18 feet of water level rise should be observed in TW-2A over the duration of the test and approximately 22.6 feet were observed. However, in test well TW-2, it was expected that approximately 54.0 feet of water level rise would be observed. In well TW-2, approximately 157 feet of water level rise was observed.

During the recovery portion of the aquifer compatibility testing, drawdown observed in the two wells was again compared and then calculated from the baseline well and aquifer parameters. These results are shown in **Figure 3-13**.

The results shown in Figure 3-13 indicates more drawdown was observed in well TW-2 during the recovery portion of the test than expected. It was expected that approximately 112 feet of drawdown would be observed in well TW-2 when 129.8 feet were actually observed. The drawdown results for well TW-2A also differ from the calculated amounts but less than that in TW-2. It was expected that approximately 35 feet of drawdown would be observed in well TW-2A during the recovery portion of the test and approximately 42 feet were observed.

3.3.3 Discussion of Geochemical Results

Analytical results from sampling conducted during the compatibility test are presented in Table 3-12. The groundwater at the Del Mar site was found to be dominated by sodium, chloride, and sulfate, and exhibited a relatively high pH of approximately 8.9. The recharge water was also found to be a sodium, chloride, sulfate type water but the pH is approximately 8.2, which is lower than the groundwater. The results of the geochemical analyses of these two waters and the aquifer matrix suggested that upon mixing, the calcium and magnesium in the recharge water would have a tendency to precipitate, and drop out of solution as a solid in the aquifer. The analyses also suggested that the precipitation would only occur when the two waters mixed, and if this mixing could be either minimized or kept away from the wellbore, damage to the aquifer may be minimized. The water quality-monitoring program presented previously was developed to track potential geochemical reactions during the testing and to evaluate if the hypothesized reactions were occurring.

The water quality results from the aquifer compatibility testing are presented as a series of graphical plots. These plots are **Figures 3-14 through 3-24** and present the recovery water quality (y-axis) against the percent recharged or recovered from the aquifer (x-axis). The recovery water quality (y-axis) is expressed as the concentration of the particular chemical constituent being presented. The percent recharged or recovered from the aquifer (x-axis) is expressed as the percentage of the recharged total volume that has been recharged or recovered at that point.

The results of the chloride monitoring are presented in the first plot, Figure 3-14. This figure shows the average concentration of chloride in the recharge water was about 134 mg/l while the average concentration of chloride in the groundwater was approximately 418 mg/l. As the recharged water was recovered from the aquifer, the recovered chloride concentration stayed close to that of the recharge water for over 20 percent recovery. Following this point, the recovered water exhibited a mixed quality of groundwater and recharge water. At 100 percent recovery, the recovered water quality exhibited a chloride concentration of about 230 mg/l, which is below drinking water standards.

Table 3-12 Aquifer Compatibility Test Analytical Results Laredo Aquifer Storage and Recovery Project

				iron	Manganese	Sul	fate	Chloride		
Sample ID	Sample Type	Date	Time	* Result	* Result	* Result	MEQ	* Result	MEQ	
CY1.I.01	LAB-A	01/15/98	1345	<0.05	<0.05	196.00	4.08	139.0	3.92	
CY1.I.02	LAB-A	01/17/98	1045	<0.05	<0.05	187.00	3.89	132.0	3.72	
CY1.I.03	LAB-A	01/19/98	0900	<0.05	<0.05	188.00	3.91	133.0	3.75	
CY1.I.04	LAB-A	01/21/98	0900	0.05	<0.05	190.00	3.96	136.0	3.84	
CY1.R.01	LAB-A	01/23/98	1340	0.17	< 0.05	195.00	4.06	137.0	3.86	
CY1.R.02	LAB-A	01/23/98	1620	0.10	<0.05	196.00	4.08	137.0	3.86	
CY1.R.03	LAB-A	01/25/98	1305	<0.05	<0.05	250.00	5.21	191.0	5.39	
CY1.R.04	LAB-A	01/26/98	1628	0.18	<0.05	264.00	5.50	211.0	5.95	
CY1.R.05	LAB-A	01/27/98	0950	<0.05	< 0.05	279.00	5.81	231.0	6.52	
CY1.R.06	LAB-A	01/28/98	1405	0.06	<0.05	325.00	6.77	282.0	7.96	
CY1.R.07	LAB-A	01/29/98	1000	<0.05	<0.05	351.00	7.31	306.0	8.63	
CY1.R.08	LAB-A	01/30/98	0930	0.05	<0.05	359.00	7.47	324.0	9.14	
DLY.CY1.01	LAB-B	01/15/98	1345	NA	NA	190.00	3.96	134.0	3.78	
DLY.CY1.02	LAB-B	01/16/98	1105	NA	NA	189.00	3.93	133.0	3.75	
DLY.CY1.03	LAB-B	01/17/98	1045	NA	NA	187.00	3.89	132.0	3.72	
DLY.CY1.04	LAB-B	01/18/98	1010	NA	NA	181.00	3.77	128.0	3.61	
DLY.CY1.05	LAB-B	01/19/98	0900	NA	NA	186.00	3.87	132.0	3.72	
DLY.CY1.06	LAB-B	01/20/98	0950	NA	NA	192.00	4.00	137.0	3.86	
DLY.CY1.07	LAB-B	01/21/98	0900	NA	NA	192.00	4.00	137.0	3.86	
DLY.CY1.08	LAB-B	01/22/98	0900	NA	NA	192.00	4.00	137.0	3.86	
DLY.CY1.09	LAB-B	01/23/98	1620	NA	NA	194.00	4.04	136.0	3.84	
DLY.CY1.10	LAB-B	01/24/98	1225	NA	NA	191.00	3.98	136.0	3.84	
DLY.CY1.11	LAB-B	01/25/98	1305	NA	NA	245.00	5.10	188.0	5.30	
DLY.CY1.12	LAB-B	01/26/98	1005	NA	NA	260.00	5.41	202.0	5.70	
DLY.CY1.13	LAB-B	01/27/98	0950	NA	NA	277.00	5.77	230.0	6.49	
DLY.CY1.14	LAB-B	01/28/98	1405	NA	NA	323.00	6.72	281.0	7.93	
DLY.CY1.15	LAB-B	01/29/98	1000	NA	NA NA	352.00	7.33	300.0	8.46	
DLY.CY1.16	LAB-B	01/30/98	0930	NA	NA	362.00	7.54	326.0	9.20	
Noto										

NA = Not Analyzed - See Table 2-6 for sample type and parameters analyzed

^{*} All results in milligrams per liter (mg/L) MEQ = Millequivalents

Table 3-12
Aquifer Compatibility Test Analytical Results
Laredo Aquifer Storage and Recovery Project

					Bicarbonate	····	Cali	cium	Magnesium	
Sample ID	Sample Type	Date	Time	* Result	TALK ²	MEQ	* Result	MEQ	* Result	MEQ
CY1.I.01	LAB-A	01/15/98	1345	146.00	146.31	2.3980	93.00	4.64	12.20	1.00
CY1.I.02	LAB-A	01/17/98	1045	148.00	147.52	2.4179	80.96	4.04	20.40	1.68
CY1.I.03	LAB-A	01/19/98	0900	145.00	145.09	2.3780	78.60	3.92	20.40	1.68
CY1.I.04	LAB-A	01/21/98	0900	154.00	153.62	2.5178	85.80	4.28	18.50	1.52
CY1.R.01	LAB-A	01/23/98	1340	155.00	154.84	2.5378	86.60	4.32	19.40	1.60
CY1.R.02	LAB-A	01/23/98	1620	151.00	151.18	2.4779	83.40	4.16	20.90	1.72
CY1.R.03	LAB-A	01/25/98	1305	183.00	195.07	3.1973	26.40	1.32	4.90	0.40
CY1.R.04	LAB-A	01/26/98	1628	216.00	232.87	3.8167	20.00	1.00	3.60	0.30
CY1.R.05	LAB-A	01/27/98	0950	231.00	249.94	4.0965	18.00	0.90	5.30	0.44
CY1.R.06	LAB-A	01/28/98	1405	234.00	256.04	4.1964	18.00	0.90	6.08	0.50
CY1.R.07	LAB-A	01/29/98	1000	239.00	263.35	4.3163	17.20	0.86	4.38	0.36
CY1.R.08	LAB-A	01/30/98	0930	233.00	259.69	4.2564	15.60	0.78	4.62	0.38
DLY.CY1.01	LAB-B	01/15/98	1345	146.00	146.31	2.40	NA	NA	NA	NA
DLY.CY1.02	LAB-B	01/16/98	1105	147.00	147.52	2.42	NA	NA	NA NA	NA
DLY.CY1.03	LAB-B	01/17/98	1045	146.00	146.31	2.40	NA	NA	NA	NA
DLY.CY1.04	LAB-B	01/18/98	1010	145.00	145.09	2.38	NA	NA	NA	NA
DLY.CY1.05	LAB-B	01/19/98	0900	144.00	143.87	2.36	NA	NA	NA NA	NA
DLY.CY1.06	LAB-B	01/20/98	0950	144.00	143.87	2.36	NA	NA	NA	NA
DLY.CY1.07	LAB-B	01/21/98	0900	157.00	151.18	2.48	NA	NA	NA	NA
DLY.CY1.08	LAB-B	01/22/98	0900	143.00	142.65	2.34	NA	NA	NA	NA
DLY.CY1.09	LAB-B	01/23/98	1620	149.00	148.74	2.44	NA	NA	NA	NA
DLY.CY1.10	LAB-B	01/24/98	1225	179.00	179.22	2.94	NA	NA	NA	NA
DLY.CY1.11	LAB-B	01/25/98	1305	183.00	195.07	3.20	NA	NA	NA	NA
DLY.CY1.12	LAB-B	01/26/98	1005	207.00	226.77	3.72	NA	NA	NA_	NA
DLY.CY1.13	LAB-B	01/27/98	0950	226.00	249.94	4.10	NA	NA _	NA	NA
DLY.CY1.14	LAB-B	01/28/98	1405	226.00	257.25	4.22	NA	NA	NA	NA
DLY.CY1.15	LAB-B	01/29/98	1000	238.00	264.57	4.34	NA	NA	NA	NA
DLY.CY1.16	LAB-B	01/30/98	0930	NA	262.13	4.30	NA	NA	NA	NA
Note:	·				 					

Note:

MEQ = Millequivalents

NA = Not Analyzed - See Table 2-6 for sample type and parameters analyzed

^{*} All results in milligrams per liter (mg/L)

² Bicarbonate value calculated by the following relationship: total alkalinity/.8202

Table 3-12
Aquifer Compatibility Test Analytical Results
Laredo Aquifer Storage and Recovery Project

				Soc	lium	Total Alkalinity	Phenolic Alkalinity	Hardness	Turbidity	TDS
Sample ID	Sample Type	Date	Time	* Result	MEQ	* Result	* Result	* Result	(NTU)	* Result
CY1.I.01	LAB-A	01/15/98	1345	105.00	4.57	120.00	ND	292.00	0.30	642.00
CY1.I.02	LAB-A	01/17/98	1045	106.00	4.61	121.00	ND	286.00	0.46	658.00
CY1.I.03	LAB-A	01/19/98	0900	105.00	4.57	119.00	ND	280.00	0.13	668.00
CY1.I.04	LAB-A	01/21/98	0900	107.00	4.65	126.00	ND	290.00	0.19	666.00
CY1.R.01	LAB-A	01/23/98	1340	97.00	4.22	127.00	ND	296.00	1.67	716.00
CY1.R.02	LAB-A	01/23/98	1620	96.00	4.18	124.00	ND	294.00	0.76	618.00
CY1.R.03	LAB-A	01/25/98	1305	210.00	9.14	160.00	5.00	86.00	0.16	890.00
CY1.R.04	LAB-A	01/26/98	1628	250.00	10.88	191.00	7.00	65.00	0.10	1010.00
CY1.R.05	LAB-A	01/27/98	0950	260.00	11.31	205.00	8.00	67.00	0.10	1096.00
CY1.R.06	LAB-A	01/28/98	1405	350.00	15.23	210.00	9.00	70.00	0.07	1254.00
CY1.R.07	LAB-A	01/29/98	1000	380.00	16.53	216.00	10.00	61.00	0.07	1350.00
CY1.R.08	LAB-A	01/30/98	0930	410.00	17.84	213.00	11.00	58.00	0.07	1410.00
								0.00		
DLY.CY1.01	LAB-B	01/15/98	1345	NA	NA	120.00	ND	298.00	0.07	NA
DLY.CY1.02	LAB-B	01/16/98	1105	NA	NA	121.00	ND	300.00	0.07	NA
DLY.CY1.03	LAB-B	01/17/98	1045	NA	NA	120.00	ND	279.00	0.24	NA
DLY.CY1.04	LAB-B	01/18/98	1010	NA	NA	119.00	ND	274.00	0.68	NA
DLY.CY1.05	LAB-B	01/19/98	0900	NA	NA	118.00	ND	300.00	0.21	NA
DLY.CY1.06	LAB-B	01/20/98	0950	NA	NA	118.00	ND	284.00	0.26	NA
DLY.CY1.07	LAB-B	01/21/98	0900	NA	NA	124.00	ND	290.00	0.16	NA
DLY.CY1.08	LAB-B	01/22/98	0900	NA	NA	117.00	ND	290.00	0.17	NA
DLY.CY1.09	LAB-B	01/23/98	1620	NA	NA	122.00	ND	284.00	0.91	NA
DLY.CY1.10	LAB-B	01/24/98	1225	NA	NA	147.00	ND	148.00	0.28	NA
DLY.CY1.11	LAB-B	01/25/98	1305	NA	NA	160.00	5.00	88.00	0.16	NA
DLY.CY1.12	LAB-B	01/26/98	1005	NA	NA	186.00	8.00	70.00	0.16	NA
DLY.CY1.13	LAB-B	01/27/98	0950	NA	NA	205.00	10.00	67.00	0.18	NA
DLY.CY1.14	LAB-B	01/28/98	1405	NA	NA	211.00	13.00	62.00	0.10	NA
DLY.CY1.15	LAB-B	01/29/98	1000	NA	NA	217.00	11.00	59.00	0.07	NA
DLY.CY1.16	LAB-B	01/30/98	0930	NA	NA	215.00	12.00	55.00	0.18	NA
Makes	<u> </u>									

Note:

MEQ = Millequivalents

NA = Not Analyzed - See Table 2-6 for sample type and parameters analyzed

ND = Not Detected

^{*} All results in milligrams per liter (mg/L)

Table 3-12
Aquifer Compatibility Test Analytical Results
Laredo Aquifer Storage and Recovery Project

				Conductivity	nductivity Field Parameters (Standard Units)				Mass i	Balance Calc	ulation	
Sample ID	Sample Type	Date	Time	(µmoh's)	PH_RSLT	F-Cond	F-Temp	F-pH	F-Eh	Cations	Anions	Balance %
CY1.I.01	LAB-A	01/15/98	1345	1106.00	7.6	NA	NA	NA	NA	10.21	10.40	0.91ء
CY1.I.02	LAB-A	01/17/98	1045	1105.00	7.9	NA	NA	NA	NA	10.33	10.03	1.45
CY1.I.03	LAB-A	01/19/98	0900	1104.00	7.6	NA	NA	NA	NA	10.17	10.04	0.61
CY1.I.04	LAB-A	01/21/98	0900	1105.00	7.6	NA	NA	NA	NA	10.46	10.31	0.71
CY1.R.01	LAB-A	01/23/98	1340	1124.00	7.6	NA	NA	NA	NA	10.14	10.46	-1.58
CY1.R.02	LAB-A	01/23/98	1620	1132.00	7.6	NA	NA	NA	NA	10.06	10.42	-1.79
CY1.R.03	LAB-A	01/25/98	1305	1514.00	8.4	NA	NA	NA	NA	10.86	13.79	-11.91
CY1.R.04	LAB-A	01/26/98	1628	1677.00	8.6	NA	NA	NA	NA	12.17	15.27	-11.29
CY1.R.05	LAB-A	01/27/98	0950	1809.00	8.6	NA	NA	NA	NA	12.64	16.42	-13.00
CY1.R.06	LAB-A	01/28/98	1405	2070.00	8.6	NA	NA	NA	NA	16.62	18.92	-6.46
CY1.R.07	LAB-A	01/29/98	1000	2230.00	8.6	NA	NA	NA	NA	17.75	20.26	-6.60
CY1.R.08	LAB-A	01/30/98	0930	2370.00	8.6	NA	NA	NA	NA	18.99	20.87	-4.71
DLY.CY1.01	LAB-B	01/15/98	1345	1089.00	7.60	1097.00	17.70	7.46	433.10	NA	NA	NA
DLY.CY1.02	LAB-B	01/16/98	1105	1094.00	7.60	1109.00	17.30	7.46	514.50	NA	NA	NA
DLY.CY1.03	LAB-B	01/17/98	1045	1107.00	7.60	1114.00	17.30	7.30	194.70	NA	NA	NA
DLY.CY1.04	LAB-B	01/18/98	1010	1095.00	7.60	1114.00	16.70	7.21	203.60	NA	NA	NA
DLY.CY1.05	LAB-B	01/19/98	0900	1099.00	7.60	1114.00	16.40	7.29	187.70	NA	NA	NA
DLY.CY1.06	LAB-B	01/20/98	0950	1102.00	7.60	1121.00	16.40	7.28	185.40	NA	NA	NA
DLY.CY1.07	LAB-B	01/21/98	0900	1114.00	7.60	1126.00	16.40	7.31	197.90	NA	NA	NA
DLY.CY1.08	LAB-B	01/22/98	0900	1112.00	7.60	1130.00	16.40	7.04	199.50	NÃ	NA	NA
DLY.CY1.09	LAB-B	01/23/98	1620	1120.00	7.60	1147.00	18.30	7.36	-30.90	NA	NA	NA
DLY.CY1.10	LAB-B	01/24/98	1225	1206.00	8.00	1219.00	19.80	7.77	-84.90	NA	NA	NA NA
DLY.CY1.11	LAB-B	01/25/98	1305	1491.00	8.40	1535.00	21.80	8.14	-112.00	NA	NA	NA
DLY.CY1.12	LAB-B	01/26/98	1005	1630.00	8.50	1653.00	23.00	8.15	-59.70	NA	ŅĀ	NA
DLY.CY1.13	LAB-B	01/27/98	0950	1807.00	8.60	1829.00	24.20	8.26	116.70	NA	NA	NA
DLY.CY1.14	LAB-B	01/28/98	1405	2060.00	8.60	2120.00	25.10	8.43	65.20	NA	NA	NA
DLY.CY1.15	LAB-B	01/29/98	1000	2230.00	8.60	2260.00	25.40	8.44	28.50	NA	NA	NA
DLY.CY1.16	LAB-B	01/30/98	0930	2370.00	8.60	NA	NA	NA	NA	NA	NA	NA
Note:												

Note:

MEQ = Millequivalents

NA = Not Analyzed - See Table 2-6 for sample type and parameters analyzed

^{*} All results in milligrams per liter (mg/L)

The chloride mixing response is a good indicator of the physical mixing of the recharged and native groundwater during an ASR cycle. Unlike many other chemical constituents, chloride in the two waters does not typically react and the observed chloride concentration represents the proportional mix of the two waters. The results shown in **Figure 3-14** indicate that the mixing of recharged and native groundwater is low and based on mixing alone, water recharged into the aquifer may be recoverable for subsequent drinking water use.

The results of the total dissolved solids (TDS) concentrations are presented in Figure 3-15. The results of the TDS monitoring indicate a similar response to chloride; however, if examined closely, the results suggest somewhat higher TDS concentrations are seen as recovery progresses, relative to the corresponding chloride concentrations. This observation is further reinforced in Figure 3-16, which compares the chloride and TDS response as a plot of percent recharge water against percent recovery. The percent recharge water represents the percentage of recharge water recovered (taken as a percent of the original recharge water concentration) in the sample taken at the corresponding percent volumetric recovery.

The TDS response as compared to the chloride response suggests that some chemical changes are occurring during aquifer storage that result in dissolved ions in the recovered water that are in addition to those resulting from the simple mixing of the two waters.

The observed calcium concentrations are shown in Figure 3-17 and are plotted against chloride in Figure 3-18. The results indicate the calcium that was recharged into the aquifer remained there and was not removed in the recovered water. As shown on Figure 3-18, calcium concentrations in the injected water were approximately 85 mg/l. The recovered water calcium concentrations dropped to less than 30 mg/l by the time 50 percent of the recharged water was recovered. The reduction in calcium concentration is thought to be the result of calcium precipitation in the aquifer combined with calcium ion exchange with sodium on the aquifer clay minerals. This is supported in Figures 3-19 and 3-20, which indicate somewhat higher concentrations of sodium in the recovered water than would be expected based on mixing alone. Additionally, as shown in Figures 3-21 and 3-22, the alkalinity of the recovered water was higher than can be attributed to mixing alone. The increase in alkalinity may be a byproduct of calcium precipitation that reduced the pH (Figure 3-23) of the native groundwater and resulted in additional dissolution of bicarbonate in the aquifer matrix.

The observed temperature of the recharged and recovered water is presented in **Figure 3-24**. The recharged water was cooler than the native groundwater as shown in the figure, with the average recharged temperature approximately 17 °C, and the groundwater temperature approximately 27 °C.

3.3.4 Summary of Aquifer Compatibility Testing Results

The results of the aquifer compatibility testing indicate that substantial head buildup results from injection of potable water into the TW-2 well at the Del Mar site. As discussed earlier (Figure 3-11), approximately 157 feet of drawup was observed in the aquifer during recharge, which is approximately 100 feet more than would be expected if the well were being pumped. The well was backflushed during recharge to observe if any possible particulate plugging could be removed and reduce injection head buildup. Backflushing the well did appear to reduce the head buildup somewhat but not an appreciable amount.

The head increase observed is similar to that observed at other ASR sites where recharge of potable water occurs into an aquifer with a low transmissivity. Recharge into similar low transmissivity aquifers typically results in substantial head increases that only exhibit moderate improvements with backflushing, and that continue to build up head until injection ceases. The mechanisms responsible for substantial head buildup in a low transmissivity aquifer are not completely understood, but are believed to result from hydraulic resistance in the vicinity of the wellbore to injection, and small particles in the injected water that essentially close off the small pores available in the wellbore and immediate areas of the aquifer.

The recovery portion of the testing indicates additional drawdown in the well resulted from the testing. Based on the pumping tests conducted previously at well TW-2, approximately 17.5 feet of additional drawdown was observed during the recovery portion of the test. It is not certain that the reduction in capacity is directly the result of injection into the well, or if biological growth in the wellbore could have reduced the well capacity between the aquifer test performed in July 1997 and the date of this test. This was discussed previously as one possible mechanism to explain the differences between the observed results of the three pumping tests performed on this well. This is also supported by the observed increase in alkalinity during the recovery portion of the testing.

It was observed that the temperature of the recharged water was cooler than the native groundwater. This difference would result in higher heads required to recharge the aquifer as water viscosity increases as the water temperature decreases. The lower temperature of the recharge water results in a decrease in the apparent transmissivity of the aquifer as transmissivity is a function of both the aquifer matrix geometry and the fluid properties in the aquifer. In this case, if all the water in the aquifer were 17 °C instead of the observed 27 °C, the observed transmissivity would decrease from 168 ft²/day to about 133 ft²/day. However, recharge of the aquifer did not change all the water in the aquifer to a lower temperature and, therefore, the observed transmissivity would lie somewhere between the two values. It is also important to note that the maximum expected increase in head associated with a lowering of the transmissivity is only about 15 feet, which only accounts for a small percentage of that actually observed.

The geochemical analysis indicated that much of the calcium in the recharged water remained in the aquifer following recharge. It is likely that the calcium precipitated as calcium carbonate after being mixed with the native groundwater. Some of the calcium may also have exchanged for sodium in the aquifer clays. The precipitated calcium could become fixed to the aquifer matrix and result in a reduction of pore size in the aquifer. This type of reaction would result in a decrease in permeability of the aquifer matrix across the entire recharge although most the damage would occur near the wellbore. It is likely that this effect was responsible for a portion of the head increase observed during the aquifer compatibility testing; however, it is probable that this activity did not result in the total increase in head observed.

18069P02.DGN

CH2MHILL

4.0 Summary of Findings

4.1 Summary of Activities and Results

The City of Laredo overlies the Laredo Formation, a fine-grained aquifer that outcrops in a north-south band throughout the City and dips to the southeast. During this investigation, a limited test drilling program was conducted in the Laredo Formation to evaluate the potential for implementing an ASR program in the aquifer. The investigation included the construction of 4 boreholes at 3 locations in east-central and northeast Laredo. A monitor well was constructed in each borehole and several pumping tests were conducted and groundwater samples obtained. Additionally, 17 existing water wells were located and water samples obtained. This information was used to refine the understanding of the Laredo aquifer and supplement existing information. At one of the three test sites, the Del Mar storage tank site, a limited aquifer compatibility test was performed to further evaluate aquifer conditions.

The aquifer within the Laredo Formation was found to consist of multiple sandstone layers that are interbedded with low permeability shales and claystones. The upper portions of the Laredo Formation appear to have the best potential for water resource development and are referred to as the upper sand unit. The saturated upper sand zone appears to occur within a relatively narrow, north-south trending band that encompasses most of central and eastern Laredo. This unit is approximately 200 to 250 feet thick in central and eastern Laredo, about 150 feet of which consists of water-bearing sandstone layers. The depth to the saturated portions of the upper sand unit is controlled by the dip of the formation and ranges from about 100 feet in west-central Laredo to greater than 800 feet in east Laredo. In western Laredo, the upper sand zone is present at the surface and is only partially saturated. While the entire formation thickens to the east and southeast, in this direction it also becomes finer grained and contains fewer and thinner sand layers.

The Laredo Formation supports local water wells for limited supply. Yields to wells were found to be about 60 gpm, with drawdowns in the range of 50 to 70 feet. The results of this investigation indicate that well specific capacities from 0.5 to 2.5 are possible but generally 1.0 gpm/ft can reliably be developed in central and eastern areas of the City where the entire saturated thickness of the upper sand zone occurs. It is probably possible to construct wells with higher specific capacities using alternative drilling techniques.

Water quality of the Laredo Formation groundwater was generally found to be mineralized, with sodium and chloride concentrations in the range of 422 to 982 mg/l and 243 to 743 mg/l, respectively. Two primary groundwater types were identified across the City, the character of which appears to be dependent on the distribution of the upper sand zone. In western and southern Laredo, where the upper sand unit is thin or absent, the groundwater is low in pH and high in TDS. Sodium and sulfate are the dominant cations and anions. In central to eastern Laredo, the groundwater in the upper sand zone is characterized by high pH (8.81-9.13) and intermediate TDS (1,266-2,200 mg/l). The dominant cation is sodium and the anions chloride, bicarbonate, and sulfate generally occur in near equal concentrations.

Water quality samples of the finished water from the Jefferson WTP were obtained and analyzed during this investigation. The sample results were used with the geological core analysis and the groundwater quality analyses to evaluate potential chemical reactions that may occur during storage of the treated water in the aquifer. The evaluation utilized a thermodynamic equilibrium computer model, which predicted the potential chemical reactions that may occur if the recharge water, native groundwater, and the mineral composition of the aquifer matrix were intermixed.

Additionally, MFI tests were conducted on the WTP finished water. These tests measure the physical ability of the water to be pushed through small pore spaces by passing the water though 0.45 micron filters. The volumetric rate over time that water will pass through the 0.45 micron filter is related to how quickly the water may plug a wellbore over time.

The results of the geochemical modeling suggested that the native groundwater might have the potential to precipitate calcium carbonate when mixed with the treated WTP water. Additionally, it was observed that the native groundwater exhibits relatively high levels of TOC and nitrogen compounds. These parameters indicate that the aquifer has a high potential of developing biological growth. Bacterial growth in well casings and screens is a major concern in ASR systems as plugging of the wellbore can occur during injection.

The MFI test results indicated that the WTP finished water had a relatively low potential for aquifer plugging. The measured MFI values were in the range of 2 to 5, which indicate only a small buildup of head should occur during injection.

The results of the investigation following the above test drilling and water quality analyses indicated that storage of water in the Laredo Formation may be possible. However, the aquifer was known to have a very low transmissivity. The low transmissivity also indicates the pore spaces in the aquifer are small and that plugging of the aquifer during injection could occur with only little cause. Because some of the results to this point indicated potential problems with wellbore plugging, a field test, the aquifer compatibility test, was developed to test recharge of the aquifer on a small scale and measure the chemical and hydraulic aquifer reactions in an actual test.

The aquifer compatibility test was conducted on well TW-2 at the Del Mar site. The test involved recharging the aquifer with treated WTP water followed by recovery of the water through pumping the well. A total of 288 thousand gallons of treated water were recharged into the aquifer at 28 gpm through well TW-2 over a period of 7 days. Following recharge, a total of 514 thousand gallons were pumped from well TW-2 at 52 gpm over a period of 7 days. During the testing, numerous water quality samples were obtained and analyzed. Water levels in well TW-2 and monitor well TW-2A were measured on a regular basis.

The testing resulted in relatively high heads being required to inject water into the aquifer and confirmed that the aquifer has a high tendency to plug. The overall water quality during recovery was good but did confirm that calcium precipitation was occurring.

4.2 Discussion of Results

The investigation results indicate the north-central area of Laredo is best for water production and ASR applications. This area provides the best aquifer thickness at reasonable drilling depths. Further west, the aquifer thins and the better sand zones do not

regularly occur. Further east the aquifer dips to greater depths and results in deeper wells and probably lower well yields. The area tested, in the vicinity of the Del Mar abandoned WTP, is one of the better potential locations for an ASR application.

The treated water from the Jefferson WTP tested low in TSS and the MFI values were low. This indicates that the treated water in Laredo has low or similar physical plugging potential relative to other ASR facilities in the United States. However, these other ASR facilities have much higher transmissivities and it is possible that even low MFI values can result in relatively significant plugging of low transmissivity aquifers.

The results of the aquifer compatibility testing indicate that calcium does precipitate when the treated water mixes with the native groundwater. This chemical reaction forms a solid, calcium carbonate, which can plug off a portion of the aquifer pores. Additionally, the potential for biological growth in the wellbore and aquifer is high, which provides another mechanism to potentially plug the aquifer.

The aquifer compatibility testing demonstrated that injection of the Laredo treated water into the Laredo Formation results in high head buildup and aquifer plugging. The mechanisms that cause this head increase were identified but the relative contribution of each is not yet understood. Calcium precipitation was observed and could be responsible for the observed behavior. Biological growth in the casing and screen is also possible but is not strongly supported by the geochemical data.

It may be possible to control either of these plugging mechanisms by proper design and operation of ASR facilities. Control of the biological growth is likely to be controlled by maintaining a chlorine residual in the well and wellbore at all times. The calcium precipitation can probably be controlled by keeping the mixing zone in the aquifer, away from the wellbore. This could be accomplished by not recovering all the water injected and thus permanently replacing the native groundwater with treated water and establishing a new equilibrium in the aquifer.

However, each of the above mechanisms to control the aquifer plugging may also have potential side effects. Chlorine contact time leads to higher disinfection byproducts and any calcium precipitation could negatively affect this aquifer because of its very fine grained nature. In summary, it may be possible to inject and store treated water in the Laredo Formation; however, it would require additional testing to obtain a full understanding of the plugging reactions, and the final ASR facilities would require careful operation to maintain their ability to inject and recover water.

4.3 Economics

The results of the Step 1 investigation presented preliminary costs associated with implementing a 5 mgd ASR system in the Laredo Formation. The preliminary costs were based on several assumptions regarding well size, depth, spacing and yield that were made during the Step 1 investigation. During the Step 2 work, these assumptions were updated from the field testing and are presented adjacent to the Step 1 findings in the following table:

Table 4-1 Step 1 and Step 2 Assumptions
Laredo Aquifer Storage and Recovery Project, Laredo, Texas

ASR Well Design Criteria	Step 1 Assumptions	Step 2 Refined Assumptions
Average Depth	650 feet	600 feet
Well Casing Diameter	12 inch	12 inch
Recovery Rate	300 gpm	150 gpm
Recharge Rate	250 gpm	75 gpm
Minimum Well Spacing	1,000 feet	1,500 feet

It must be noted that the above well yields and spacing assume that the larger full scale ASR wells will perform at higher efficiencies than the test wells and that they will be located in areas of the highest transmissivities. Based on the above values, the following cost estimate was developed:

Table 4-2 Cost Estimate – 5 Mgd ASR System
Laredo Aquifer Storage and Recovery Project, Laredo, Texas

Item	Unit	No. Required	Estimated Unit Cost	Estimated Total Cost
ASR Well 12-inch dia, 600 ft Total Depth, 200 foot screen	Each	28	\$ 70,000	\$1,960,000
25 hp Well Pump and piping	Each	28	\$ 10,000	\$ 280,000
Wellhead Piping	Foot	28	\$ 50,000	\$ 1,400,000
Disinfection Facility	Each	28	\$ 6,000	\$ 168,000
I & C Allowance	Each	28	\$ 5,000	\$ 140,000
Miscellaneous Other Construction	10 %	1	\$ 3,948,000	\$ 394,800
Engineering and Testing	Each	1	\$ 900,000	\$ 900,000
Contingency	20 %	1	\$ 5,242,800	\$ 1,048,560
Total for 5 mgd Wellfield				\$ 6,291,360

The above cost estimate is seen to be considerably higher than the estimate developed in the Step 1 report. The largest difference is the assumed well capacity, which has decreased from 300 gpm to 150 gpm. This doubled the number of wells required for the 5 mgd recovery flow. The assumed well spacing also increased from 1,000 feet to 1,500 feet because of the areas of low transmissivity and the interference that would be caused between each well. The increased spacing changed the conceptual layout of the wellfield to consist of wells individually tied into existing distribution system piping. The layout in the Step 1 report assumed a common piping manifold connecting all the wells to a common disinfection facility. Because of the increased spacing, it is thought more economical to locate individual wells throughout the distribution system.

The estimated costs for engineering and testing were also increased to reflect the uncertainties identified in the testing program. In order to implement an operating ASR facility for the City, each well would require careful location selection, construction and testing.

The results of this investigation indicate that an ASR application in the Laredo Formation would require several low yield wells. It has been estimated that the potential injection rate in each well would be approximately 75 gpm, which is one half of the estimated potential recovery rate. Substantial well plugging was also observed during the testing, which will require investigation prior to implementation of the full concept. The work done indicates an ASR application for the City will require a substantial level of operation and maintenance (O&M). The estimated O&M costs for the above facility were based on the current level of understanding. These costs are approximate because neither the actual well yields that are obtainable, and nor the operations required to minimize the observed well plugging are well understood at this time. However, an estimate was developed to identify a potential range for these costs.

The O&M cost estimate assumes one person would operate the ASR facility full time, 8-hours per day. It was assumed that each well would require cleaning every 3 years at a cost of \$ 10,000 each. Power costs were estimated at \$0.07 per kilowatt-hour, and it was assumed the stored water would be recharged over a period of 8 months and recovered over a period of 4 months. Zero cost was assigned to the value of the treated water. The O&M costs are presented as an add-on cost to the finished water. Based on these assumptions, the estimated O&M cost for a 5-mgd ASR system is expected to be in the range of \$0.60 to \$0.65 per thousand gallons of water stored and recovered.

5.0 Conclusions and Recommendations

5.1 Conclusions

A limited geochemical and hydrogeologic evaluation indicates that injection of potable water into the Laredo Formation is possible. However, the results of the evaluation indicate that injection will be complicated by the low transmissivity aquifer conditions. These conditions make the aquifer very susceptible to physical plugging even though the distribution water has a very low plugging potential relative to other ASR sites where higher transmissivities exist. In addition, the geochemical characteristics of the surface water and groundwater are such that calcium has the tendency to precipitate (form a solid) within the mixing zone of these waters and/or destabilize the clay mineralogy, thus decreasing the size of the pores within the aquifer matrix. Also, biologic activity may be supported by the geochemical conditions and has the potential to further plug the aquifer. While it is possible that these plugging issues can be managed, additional evaluation of the geochemical and hydraulic factors is needed to better understand the situations that may occur during more lengthy injection and recovery cycles.

During the Step 1 evaluation, water balance estimates indicated that the optimum ASR system would have a 10 mgd recharge and recovery capacity to meet peak demand projections. A conceptual ASR system was proposed that would consist of two 5-mgd ASR facilities, each located in different areas of the City where demands and growth are highest. However, based on the current findings, it was determined that the geologic conditions may not be able to support two facilities, the estimated cost of the ASR system would be higher, and management of the system more technically oriented than previously considered. The low transmissivity conditions will result in lower well yields that require not only more wells but also a greater spacing between wells to limit interference effects. This constraint will probably limit the size of an ASR wellfield based on available land areas. For this reason, it is probably more realistic to consider a 5 mgd or smaller ASR facility as the largest size that the Laredo area could support.

The 5-mgd facility would consist of 28 injection wells, spaced at a minimum of 1,500 feet apart. As a result of the additional wells required, greater spacing between wells and potential plugging issues, the resulting system would require careful and consistent operational management as well as regular maintenance. The total cost of the facility is estimated to be approximately \$5.8 million dollars. O&M costs are estimated to be in the range of \$0.60 to \$0.65 per thousand gallons of water stored and recovered.

5.2 Recommendations

If the City decides to pursue an ASR as a water management tool, the following activities are recommended:

 Investigate options to enhance the well yield. Enhancement options could include techniques such as hydrofracting or chemical treatment to improve the specific capacity.

- Optimize the location for the prototype facility by better delineation of the highest transmissivity zones within the Laredo Formation. Testing of existing wells, particularly more recently installed wells in the northern areas of the City, would be helpful to verify both aquifer conditions and the change in well yields associated with larger well diameters.
- 3. Conduct additional cycle testing on a new prototype ASR well to further evaluate geochemical and hydraulic changes. While it may be possible to manage plugging from calcium precipitation or possibly bacterial growth, appropriate remedies must be tested before large-scale implementation occurs.
- 4. Evaluate possible pretreatment options such as chemical addition to limit the precipitation of calcium and wellhead filtration to further reduce entrained solids.
- 5. Pursue an ordinance to protect stored water and stop well construction in large areas north of Laredo. Currently, there are no regulations or ordinances in place to control or manage well constructions in the City.

Appendix A Geophysical Evaluation of the Laredo Formation

A.1 Introduction

The purpose of this evaluation is to summarize the findings of a limited geologic study performed to assess potential drilling locations in the Laredo area based on the distribution, thickness, and continuity of sand layers within the Laredo Formation. This evaluation was originally performed in the Fall of 1996 and utilized oil and gas well geophysical data compiled in the Laredo area obtained by Alvin Schultz from the Post Cabrian Association log library in San Antonio. The evaluation was later updated to include information obtained during the 1997-1998 field investigation. The area studied was selected to coincide with the distribution of potable water transmission lines and structures.

Several hundred oil and gas well geophysical logs are available for the area. However, very few logs contain complete data for the Laredo Formation due the presence of surface casings. The surface casings are installed in accordance with Texas RailRoad Commission guidance to isolate shallow water bearing zones from potential brine contamination occurring in deeper formations.

Twenty-nine geophysical logs that contained information on conditions in the Laredo Formation were selected for analysis and include logs from the three test holes drilled during the field investigation. These logs contain information on an area that extends from 11 miles north of the City to 3 miles south of the City. Many of the wells drilled south of the City are very recent (10 years or less) and do contain information for the Laredo Formation. The location of each well log is shown on **Figure A-1**.

Two activities were performed using the geophysical data: 1) calculation of approximate sand thickness measurements and 2) development of geophysical cross sections.

A.2 Sand Thickness Calculations

Table A-1 contains gross, net, and upper net sand thickness measurements for 29 wells in the area. Net and upper sand thicknesses are the most relevant measurements for purposes of this study. Gross sand refers to the entire thickness of the sand-bearing zone and includes numerous low resistivity layers (clays, silts). The net sand refers to the cumulative thickness of individual sand layers within the sand zone. These measurements were also plotted on Figure A-1 to evaluate the distribution of net and gross sand thicknesses.

Within the sand zone, a distinction was made between net upper sand and net lower sand zones. In general, the resistivity profiles indicate that the upper sand zone contains thicker and more permeable sand beds relative to the rest of the sand zone. This finding differs from preliminary conclusions presented in the Step 1 report, which indicated that the lower sands had higher yields and potentially better water quality relative to upper sand units.

Table A-1 Net Sand Measurements Laredo Formation, Laredo, Texas

Log/Well#	Geophysical Log - Location ID	GROSS SAND	NET SAND	UPPER NET SAND
TW-1	McPherson Test Well	NM	165	140
TW-2	Del Mar Test Well	NM	211	155
TW-3	East Corridor Test Well	NM	197	171
89-29-102	Laredo Country Club Well	NM	240	190
1	Yarborough Hachar #1	495	329	166
2	Lamar Hunt Reuthinger #1	510	289	200
3	General Crude #1 Hachar	250	140	90
4	Clayton Williams #2 N.D.Hachar	482	273	132
5	Southland Drilling Co. #1 Hachar	Poor Log Quality - Use	for Correlation Only	- See #4
6	Southland #1 Killam & Hurd	440	280	165
7	AHERN #A-1 Hubbard	700	326	159
8	Killam & Hurd #1-P24 Fee	580+	420	195
9	Watson (Sanchez O'Brien - #1 A.F. Muller G&S Unit	510	230	170
10	Watson (Sanchez O'Brien Jacaman #1	590	255	150
11	Sanchez O'Brien #1 Webb Co.	650'	230'	125
12	Michael Pet. #1 Hurd-Peko-Garcia	570	185	145
13	General Crude #1 Killam & Hurd	485	335	175
14	Daigle & Young Park #1	300	142	122
15	Good Hope Ref. #1 Killam & Hurd	445	337	230
16	Hawkins/Rodriguez Cattle Co.	•	160	
17	ReMex M-G Mexico	_	-	217
18	Morgan #1 McNary	520	315	140
19	Morgan #3 Link	•	83	
20	C.F. Braun	-		
21	TransAmerica #12 Schwarz	430	237	132
22	Cattle Land Oil Co. #1 A.F. Muller	-	100	10
23	AMOCO #2 Killam & Hurd - AMOCO Range	-	130	
24	Gulf Oil Company M. Alexander #4a	500	280	160
25	Amoco Killam & Hurd - Amoco "G"	300	100	80
26	Amoco Killam & Hurd - Amoco "H"	280	100	80
	Data Incomplete - entire Laredo Formation not log	 ged due to surface casi	ng	

This latter finding is probably flawed because no consideration was given to the location of wells evaluated relative to the strike and dip of the Laredo Formation.

Attached to this memorandum are two geophysical logs from sites #7 and #12 that illustrate the occurrence of the upper versus gross sand zones relative to the entire thickness of the Laredo Formation (see Attachment A-1). These logs also contain calculations showing how gross, net, and upper net sand thicknesses were determined. As shown on the logs, within the upper sand zone, several individual sand layers occur that are separated by low resistivity units. It is inferred that low resistivity units correlate to low permeability clays and silts.

The net and upper sand thickness measurements shown on Figure A-1 illustrate that there are no significant trends in the thickness of sand across the area that was assessed. In general, the greatest thicknesses of upper net sands occur north and east of the City with a range of 160 to 200 feet. The thickness of sand generally decreases toward the west. Approximately 230 feet of upper net sand exists at log #15, located east of the City. South of the City, only three geophysical logs contain data for the entire thickness of the formation where net upper sand thicknesses are from 132 to 160 feet.

A.3 Geophysical Profiles

Two geophysical profiles were developed (a north-south section in A-A' and a west-east section in B-B') to illustrate the thickness and continuity of sand layers within the Laredo Formation. The profiles are shown in **Figures A-2** and **A-3** and their locations shown on **Figure A-1**. Note that the profiles show correlations only for those portions of the geophysical logs containing information on the Laredo Formation. Shaded zones refer to low resistivity zones composed of clays, silts, and fine sands. The profiles shown were interpreted from geophysical logs containing spontaneous potential, resistivity, and conductivity curves. To simplify the presentation of these profiles, only resistivity curves are illustrated.

Note that the Laredo Formation outcrops in a north-south trending band, approximately seven miles in width. Since the formation dips and thickens to the east, wells located in the east will reflect thicker sequences of the formation as compared with wells to the west.

Profile A-A' runs north-south and indicates that the top of the sand zone begins 300 to 1100 feet below ground surface (bgs). The base of the sand occurs at 550 to 1550 bgs, depending on the location of the log relative to the dip and structure of the formation. Based on relatively high resistivity measurements, three to six separate sand zones occurring in the upper 200 feet of this interval appear to have the greatest capacity to transmit groundwater. These layers are between 5 and 60 feet thick and the logs indicate that interbedding is common within these layers.

In profile B-B', the top of the sand zone occurs approximately between 100 feet bgs (outcrop) and 900 feet bgs. The base of the sand zone occurs between 400 and 1300 feet. Based on resistivity profiles, the most productive sands appear to occur in the upper 200 feet of this zone. However, this is only true where the upper 200 feet are present and is not the case for well #22 (see Table A-1). At test well locations TW-1 and TW-2, the upper sand zone occurs

LAREDO FORMATION

GEOPHYSICAL PROFILE A-A'

AQUIFER STORAGE AND RECOVERY PROJECT CITY OF LAREDO, TEXAS

CH2MHILI

18069P02.DGN

INFERRED CONTACT

TOP/BOTTOM OF INTERVAL CONTAINING THE HIGHEST RESITIVITY UNITS WITHIN UPPER SAND ZONE

APPROXIMATE TOP OF PIEZOMETRIC SURFACE

between 330 to 490 and 270 to 420 feet bgs, respectively. However, consistent with findings of the earlier memorandum, specific sand layers do not correlate between all logs. The upper sand zone is present on all of the logs.

A.4 Discussion

West to east (downdip) stratigraphic correlations are generally more difficult to make relative to northeast-southwest correlations along strike, suggesting that individual sand beds may be more continuous along strike. This observation is a likely indication of the environment in which the sediments were deposited and appears consistent with the findings of Ricoy and Brown (1977) who studied the depositional environments of the Laredo/Sparta Formation in South Texas. These authors indicate that in southeast Texas, the depositional environment for the Laredo/Sparta Formation consisted of a coastal barrier- bar sand facies. This facies is associated with a wave-dominated, high-destructive deltaic system, formed by the reworking of channel-mouth bar deposits and redeposition of the sand along strike marginal to the channel mouth. According to Ricoy and Brown, the resultant deposits form arcuate to cuspate sand bodies that were oriented parallel to the current coast line.

The authors indicate that the greatest thickness of net sands (300 feet) within the Laredo Formation occur in a narrow band near the outcrop with a predominant orientation parallel to strike. This band appears to encompass the entire area discussed in this study as well as areas farther east. Outside of this band, the net sand thickness thins considerably downdip as the formation generally becomes finer grained.

A.5 Implications for Drilling Sites

Originally, this information was utilized to evaluate drilling sites that were selected as part of the proposed ASR feasibility assessment. The locations coincided with the location of water towers, treatment plants, and/or pumping stations. At least two of the originally proposed well sites ([6] Northwest Storage Tank and [7] Jefferson Water Treatment Plant) are in areas that do not appear to contain the entire thickness of "net sand" deposits and may not contain any "upper net sand" deposits considered to have the greatest potential for development. Proposed well #1 (Milmo Storage Tank) and #2 (proposed 5 million gallon storage tank) may also occur in areas that may be missing some part of the "upper net sand" zone. Log/well #18 (Table A-1 and Figure A-1) contains approximately 140 feet of net sand but is located about 1 mile downgradient of these proposed well sites. Because of the greater thickness of net upper sands in the northeast areas of the City, it was determined that the best potential for resource development might occur at locations near the Del Mar Storage Tank McPherson Storage Tank, and East Corridor Storage Tank and Booster Station.

References

Ricoy, J.U. and Brown, L.F., 1977. Depositional Systems in the Sparta Formation (Eocene) Gulf Coast Basin of Texas. Transactions-Gulf Coast Association of Geologic Societies, v XXVII. 17 p.

State Well No. 85 20 901 Previous Well No. County	We65 479
River Basin Rio Grande 23 Zone 2 Lat. 273734 Long. 2	5993139 " Source 7
Owner's Well No. Location 1/4, 1.4, Section, Block	, Survey
Owner Laredo Reddy Mix Co. Driller Waknown	
Address P.O. Box 116 Laredo, 78402 Tenany Oper Ragelio Go	ercia, V.P.
Date Drilled Depth Depth Datum D Altitude	Source of Alt. Datum
Aquifer	User
Well Const. Construction Method Material 5	
Completion Screen Material	Casing or Blank Pipe (C) Well Screen or Slotted Zone (S)
Life Data Pump Mfr. Type Schm 5 No. Stages	Open Hole (O) Cemented from to
	Diam. Setting (feet)
Bowls Diam in. Setting ft.Column Diam in.	(in.) From To
Motor Mfr Fuel or CleC. E Horsepower 2	clas
```	
Silve Medical Control of the Control	
Performance Test Date — Length of Test — Production — GPM	
Static Level - ft. Pumping Level - ft. Drawdown - ft. Sp.Cap GPM/ft.	
Ougher (Remarks Pumps into 8x20 Couc. tank.	
Water Use Primary Secondary Tertiary	<del></del>
Other Data Water Water Y Logs Other Data Other Data	
Date 12041996 Mess UTM. 10 10	
Water Date Mess.	
Levels 12	
Date	
well was here when LRM bought paperty. "	
3	
· · · · · · · · · · · · · · · · · · ·	
Recorded By D. Coker Date Record Collected 1204 1996 (20 or Updated	nax) Reporting Agency
Remarks 1	Kepording Signify
ole. 2	+ + + + +
$P^{\prime\prime}$ ( $1$	++++
à	+++
200 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
ASP.	Aquifer
K-31 6	Well No. 85 10 901
193-0384 19793 - photos 1-2 no 0/10-50-5	)





: T

Rogello Garcia Vice President

P.O. Box 116 North Mines Rd. Laredo, Texas 78042

Test. (210)723-7429 Fask (210)722-4931



1. 1. 1. 1. 1.

85-20-901



## Water Quality Field Data

27-37- <b>99-</b> 3	2 4 1-	339
99-3	•	2 4

SWN:	,	
_	_	

County: Aquifer(s): 85-20-901 Webb Laredo

Name: Laredo Reli-Mix

Address: Box 116

Sample No.__

By: D. Wker

Bottle 1 Bottle 2 Bot  500 ml 1 liter 250  Aniens Cations Nitr	nl 1 liter / soor / life Samples	3
2 mil 0\5 HNO HX (Nitrib) (Sulf	HNO HNO unless other-	_
Water Level LTM LSD Remark Mo MP Temperature (00010) 27.5 c Specific Conductance (00094) 2970 umhos/cm pH (00400) 7.30	Time in ( 9:30 Starting pH  Time out 11:10 Sample time 10:58 ml of 0.02N  Weather 14 rain well use Ind, dow ml. of Samp  utside Temp 65°F Ending pH  ampling point Discharge it & 8 x 20 Cone, tokk (qrab)	
Eh (00090) mv. henol ALK (82244)	me: 10;00 10;65 10:10 10;15 10:27 12:35 ml. pH ml. pH ml. 1: 7.61 7.24 7.25 7.24 7.30 10:45 26.8 10:55 7.89	рН
Total ALK (39086)	emp: 24.5 26.7 14.8 26.8 26.4 27.3 7.30 27.5	
Bicarbonate (00453) meq/l 327 mg/l	ond. 3050 3000 2960 2950 2950 2970 2990 2990	1
Total Cations(+)  Total Anions (-)  Total Hardness (00900)  Dissolved Solids  7975	other notes:  Purps & demand.  Purp & 9:58  Sample @ 10:58	

· (	State Well No. 85 28 30 7 Previous Well No. County	, webb 479
Owner SCVETIEN AND FINANCE OF STATE OF	River Basin Rio Grande 23 Zone 2 Let. 273507 Long.	0993604
Address  Diese Drilled    1950   S Depth   162 Depth Damm   Altinude   13 Depth Damm   Altinude   15 Depth Damm   15 Depth Damm   16 Depth Damm   17 Depth Damm   17 Depth Damm   18 Depth Damm	Owner's Well No Location 1/4, 1.4, Section, Bloc	k, Survey
Address    Construction   Constructi		
Date Drilled   7950/5 Depth   162   Source of Alt Datum   Aquifer   Well   Seron of Source of   Material   Second   Second   Well   Seron of Store Zone (S)   Open Hole (O)   Cemented from   Serving   Servin	Owner Severia 40 Flores Driller Severia	no Flores
Date Drilled   7950/5 Depth   162   Source of Alt Datum   Aquifer   Well   Seron of Source of   Material   Second   Second   Well   Seron of Store Zone (S)   Open Hole (O)   Cemented from   Serving   Servin	Address Ms. Sauce	do douter
Aquifer   Const.   Casing   Screen   Casing   Ca	Source of	Source of
Construction Method  Construction Method  Completion  Maserial  No. Stages  Diam.  Serting  ft. Column Diam.  In.  Motor Mfr.  Power  Noter Maser.  Fud or  Power  North Method  CPM Pump  CPM Mess. Rept. Est.  Performance Text  Date  Length of Text  Construction  CPM  Static Level  ft. Pumping Level  ft. Derawdown  ft. Sp.Cap.  CPM/ft.  Quality (Remarks Wash Washer  Cover Power  Cover Data  Water Date  Water Date  Water Date  Water Date  Mess.  Date  Cover Date  Mess.  Cover Date  Acquire  Cover Date  Mess.  Cover Date  Mess.  Cover Date  Acquire  Cover Date  Mess.  Cover Date  Acquire  Cover Date  Cover Date  Mess.  Cover Date		
Completion    Caing or Blank Pipe 10   Walfernam   Caing or Blank Pipe 10   Walfernam   Caing or Blank Pipe 10   Caing or Blank Pipe 10   Walfernam   Caing or Blank Pipe 10   Caing or Blank Pipe 10   Walfernam   Caing or Blank Pipe 10   Caing or Blank Pipe 10   Walfernam   Caing or Blank Pipe 10   Caing or Blank Pipe 10   Walfernam   Caing or Blank Pipe 10   Caing or Blank P	·	
Completion  Westernal  Miserial  Miserial  Monor Mfr.  Pump Mfr.  Type Noke  No. Stages  No. Stages  Diam.  Serting (So)  Comented from  Diam.  Serting (Sert)  Serting (Sert)  Diam.  Serting (Sert)  Serti	<del></del>	Corine or Plank Bine (C)
Bowls Diam. in Serting ft. Column Diam. in Serting fteel or Fower No. Stages    Commerced from	Completion Material	Well Screen or Slotted Zone (S)
Bowls Diam. in. Serting ft. Column Diam. in.  Motor Mfr. Fuel or Power Horsepower 2  Vield Flow GPM Pump GPM Mess. Rept. Est. Date  Performance Test Date Length of Test Production GPM  Static Level ft. Pumping Level ft. Drawdown ft. Sp. Cap. GPM/ft.  Quality (Remarks Water Moses for except Aricking foodshift)  Water Use Primary Abril Level Secondary Terriary 1  Other Data Available Level Quality Logs Other Data Available Level Mess. 12  Date 12 03 1976 Mess. 23 20 2-01  Water Date Mess. 12  Mose Date Date Mess. 12  Mose Date Date Mess. 12  Date Recorded By Di Coker Date Reporting Agency Office Cast of the Cast		Cemented fromto
Motor Mfr.  Ful or None  Horsepower  Vield Flow GPM Pump GPM MessRept.Est  Performance Test  Date  Length of Test  Production  GPM  Scatic Level fit. Pumping Level fit. Drawdown fit. Sp.Cap. GPM/fit.  Quality (Remarks Wass Wassel for Soundary Terriary  Other Data  Water Use  Primary Abad Wassel Secondary  Terriary  Other Data  Water Massel Level Quality  Date  Recorded By  Di Color  Date  Recorded By  Di Color  Date  Recorded By  Di Color  Date  Recorded Collected  Date  Recorded St. J. J. J. C. C. M. J.	· · · · · · · · · · · · · · · · · · ·	(in.) From To
Performance Test Date Length of Test Production GPM  Static Level fi. Pumping Level fi. Drawdown fi. Sp.Cap. GPM fi.  Quality (Remarks Wast Wood for domes fice except dricking foosibly)  Water Use Primary Abac Wescard Others Date  Other Date Water Master Water Water Water Date  Date Date Date Water Mess.  Date Date Date Date Mess.  Date Record Collected (1) 03 1996 (20 mes) Reporting Agency D1  Remarks  Aquifer Mess.  Wid No. 85 28 36	Motor Mfr Power Horsepower 2	ca5
Static Level — ft. Pumping Level — ft. Drawdown — ft. Sp.Cap. — GPM/ft.  Quality (Remarks Was Used for Dames fic exapt drinking to solly),  Water Use Primary Abad W Secondary — Terriary  Other Data  Available Level Quality Mogs — Other Data  Available Level — Mess. — Data  Date — Date — Mess. — Data  Date — Date — Mess. — Date — Date — Mess. — Date — Da	Yield Flow GPM Pump GPM Mess.,Rept.,Est Date3	
Quality (Remarks Was wood for Asmostic exapt disking tooself)  Water Use Primary Abad Secondary Terriary .  Other Data Water Myster Myster Data Collected Data Date Level Quality Lop Data Date Date Date Date Date Date Date	Performance Test Date — Length of Test — Production — GPM	
Water Use Primary Abac U Secondary Terriary 1 Other Data Water M Water Quality Logs Other Data  Date Quality Logs Other Data  Date Quality Logs Other Data  Date Date Quality Logs Other Data  Date Date Date Date Date  Date Date Date Date Date Date  Nessel 10  Nessel 10  Date Record Collected OTD OTHER CONTROL (20 max) Reporting Agency OTA  Remarks 1 No A aud Call Sinca C Mid-196015. Reporting Agency OTA  Remarks 1 No A aud Call Sinca C Mid-196015. Reporting Agency OTA  Aquifer Stall No. 8528 38	11.6	
Other Data Available Level Quality Logs Other Data  Date 12 03 1996 Mess. 23 • 20 2-01  Water Date Level Date	, <u> </u>	
Nater Date Date Meas. 23 · 20 2-01  Water Date Date Meas. 123 · 20 2-01  Mass. 12  Not used in 30-35 years,  Recorded By Di Coker Date Record Collected or Updated 12 03 1996 (20 max) Reporting Agency 21  Remarks 10 A a J c & s i n c c m i & 19 60 is . Reporting Agency 21  Remarks 10 A a J c & s i n c c m i & 19 60 is . Reporting Agency 21  Aquifer Well No. 8528 36	Water Use Primary Abno W Secondary Tertiary	
Nater Date Date Meas. 23 · 20 2-01  Water Date Date Meas. 123 · 20 2-01  Mass. 12  Not used in 30-35 years,  Recorded By Di Coker Date Record Collected or Updated 12 03 1996 (20 max) Reporting Agency 21  Remarks 10 A a J c & s i n c c m i & 19 60 is . Reporting Agency 21  Remarks 10 A a J c & s i n c c m i & 19 60 is . Reporting Agency 21  Aquifer Well No. 8528 36	Other Data  Available  Water Water Quality  Logs  Other Data  Other Data	
Not usel in 30-35 years.  Recorded By Di Coker Date Record Collected or Updated Or Updated 12 03 1996 (20 max) Reporting Agency OI Remarks 1 10 4 a J c d s i a c c mid-1960 'S. Reporting Agency OI Cassing, How	Date 12 03 1996 Mess. 23 · 20 2-01	
Recorded By Di Coker Date Record Collected 12 03 1996 (20 max) Reporting Agency OT Remarks 100 4 a J C d S in C C Mi a - 1960 'S. Reporting Agency OT Copsing.  2 a 400 5 a 14 y 40 d in k in C C Sing.  4 Hoo	Water Date Meas.	
Recorded By Di Coker Date Record Collected or Updated 1203 1996 (20 max) Reporting Agency OI Remarks 1 10 4 auch 5 incc mid-1960's. Reporting Agency OI Cosing, Hoos		
Recorded By Di Coker Date Record Collected or Updated 1203 1996 (20 max) Reporting Agency OI  Remarks 1 0 4 auch since mid-1960's. Reporting Agency OI  2 cl 400 salf y 40 drikk.  4 Hobb	hatused in 30-35 years.	
Remarks 1 10 A a year since mid-1960's. Reporting agency 5 1  2 Ed to a salty to drink;  4 Hobs  Aquifer  Well No. 8528 36		<del></del>
Remarks 1 10 A a sed since mid-1960's. Report-  2 ed 400 salty to drink.  4 HOO  Aquifer  Well No. 8528 36	Recorded By Di Coker Date Record Collected or Updated 12 03 1996 (20	max) Reporting Agency O/
Aquifer	Remarks 100 A auch since mid-1960's. Rep	
Aquifer	'EQ too salty to drink,	cosine.
Aquifer	* <del>                                      </del>	+108
Well No. 8528 36		╼╊╼╄╼╁╼╄╾┥
mo photos		
		<del></del> /





State Well No. 8523302 Previous Well No. County	webb 479
River Basin 23 Zone 2 Lat. 27 35 43 Long. 2	7 30 47 2 7
	, Survey
Owner Mines Road Dev. Ca. Driller David De Deenfield Subdu. PHI Deiller	La Cruz
AddressTenant/Oper	
Date Drilled OSOF 1966 Depth Depth Depth Datum D Altitude	Source of Alt. Datum
Aquifer Laredo 1244A00 Well W	User
Well Const. Construction Method rotary A Material Steel S	
Completion Sla Heal P Screen Steel S	Casing or Blank Pipe (C) Well Screen or Slotted Zone (S)
Life Data Pump Mfr. Type Noue MNo. Stages	Open Hole (O) Cemented from O to 62 Diam. Setting (feet)
Bowls Diam in. Setting ft.Column Diam in.	(in.) From To
Motor Mfr Fuel or   Horsepower 2	507 172 194
Yield Flow GPM Pump GPM Meas,Rept.,Est Date	CO7 194 205
Performance Test Date 8-66 Length of Test Production 24 GPM	
Static Level = ft. Pumping Level 192 ft. Drawdown 4 ft. Sp.Cap. — GPM/ft.	
Quality (Remarks Mr. Podro Busta marte Jr: water was good.	
Water Use Primary Uku Sed & Secondary Tertiary 8	
Other Data Water Water Level Quality Logs D Data	
Date 2/20 1997 Mess. 49 · 80 1-01	
Water Date	
Date Mess.	
Can see well from road gate across driveway, " Beneve of Dos sign. No access!	
Beuce of Dag sign, No OECETS!	
Recorded By D. Coker Date Record Collected 1204 1996 (20	max) Reporting Agency
Remarks 1 Re 00 / 1 ed y 1 ed 24 a 24 a 24 4 2	4004
2 dra w down in 1966	
\ <del>\</del> _\ <del>\</del>	Aquifer
	Well No. 95.28 30
93-0384 19993 NO Photo 5	/

	j	110 - 9	25-7	713	<b>~</b> *							3
, O. Jax	copy w Develope	nin i		ILLERS L	OG AND		DATA RE	PORT		For use by Wall No Located on By	<u></u>	mly y · y · d
		r. Pedro							Laro			
) Land	Ovner: 1	r, err	<u>Justan</u>	ente	1.6	.7 <u>.a</u>	<u>i</u> Ze n	<u>ario</u>	Lare	do Ter	:c.s_	
) lates	ded use:	industrial [	;Municipal [	Irrigation	a lother _	ous	e use					
) Locat	ion of well	l: County	'√ebb		isher_		Longue		_Abstract Re	·		
Mari Kons	NE S	SEC of Section	)B1c		www.		<u> </u>	<del></del>	· · · · · · · · · · · · · · · · · · ·			
6 1	100 10 2	<i>id</i> 411	es ties									
I	aredo	4, 10, 10				_			•			
		21~				23	P. P.	L EST				
			Stetch or :	map of wall	location w	rith distr	nees from	two sec	ction s.			
			· · · · · · · · · · · · · · · · · · ·	D	RILLERS L	OG OF Y	PELL.			<del></del>		
lethod of	drilling:	Standa:	<u>ri Rig</u>		Diameter o	f bele_	3:	a. De	te drilled	<u>uzust</u>	4, ]	<u> 1955</u>
				surements m	ede from			ound 1				
(ft)	To (ft)		formation of			from (ft)	To (ft)			ption and c		.E
1	3	surfac	ce			130	130	_sa	lt water	esand		
3	9	yello:	, sandst	one		130	172		ay sanc		_	
9	14	sal t	raters	and		172	154	-	tersand			
14	32	yellor	: sandst	οπе		194	205	T.	ay shale	3		
30	52		t water									
52	7.1	fray s	andy sh	ale								
72	9:		atersca									
92	110		andr sh				(Use	conti	ustion sheet	s if necess	ary)	
	~ ~				COMPLET	TION DAT	A					
	coe	PLETION			ca	S EYS				SC III	EN	
Straight	val1 🗆			Type:	old 🌋 🕦	———-			Type			
Cader re				1 1 1	from	_	ft.		" ===			
Gravel p	· -			to 13					Perforated		Slo	CCed 🛣
Open hol	_			Diemeter		Setti			Diameter		Sett	ine
Other	-6			(inches)	from (		;o_(ft)	=	(inches)	from (fr		to (ft)
				7" C.		200		. 05		172		154
-		<del></del>	<del></del>								- 1	
			<del></del>			Ī						
_	^	I her	oby corelly/	hat this we	ll ves dril	led by me	or under	my sur of my i	pervision) an moviedge and	d that belief.		
		Daniel		& Con	a	<u>vid i</u>	. Je La	1 220	us	Nog. He.	<u>7 ق</u>	
Please a	ttach elec	tric log, che	nical analysis	. =4 offer						•		
		by your compe							following:			
		,	/		R LEVEL A					**************************************		
Sharin:		ı <u>50</u>		7								
352516		·		<b>⊣</b> ~	mp type							

Static water !						
ft. below	urice					
Amping level						
feet	hours	gpm				
192		24				
-						
		<del> </del>				

Pump type		
Designed pumping rate	_ sp= C	<b>zp</b> ic
Type power unit		

Norsepower______ft. below pump :

me of contractor testing well or installing permanent pump if other than your company:

85-28-302

4

60 - 40 Pedio Bustanaide Mines Load Co. Fito Gaitlement Love Ste, Joe Makina Per 722 - 5196 - OK Destield Subar F. I 210-725-8884 Nof in use -(10218 Fr 1472) hour good chart her, count one for wool Cour 771-5968 Verlin Del-Amel good water must by Bustomade by Pola Tree in Frent year

Central Records

SEP261966

State Well No. 852860/ Previous Well No. County	webb	479
River Basin Rio Graude 23 Zone 2 Lat. 273432 Long.	9930	Source 7
Owner's Well No. Location 1/4, 1.4, Section Block		Survey
Owner Anzon Inc. Driller Unkaowa		
Address 718 Minas Rd, 78041 Tomani Oper Plant Mgr	Paul B	ridges
Date Drilled Depth Depth Datum D Altitude	يسم	Source of Alt. Datum
Aquifer	User	
Well Const. Construction Method Artified Material Steel 5		
Completion Screen Material  Lift Data Pump Mfr. Type Subm. Stages	Casing or Blank Well Screen or Open Hole (O) Cemented from Diam.	Slotted Zone (S)
Bowls Diam in. Setting ft.Column Diam in.	dal	To To
Motor Wife.		2/0 23/
Yield Flow GPM Pump GPM Mess., Rept., Est Date		
Performance Test Date 7-26-57 Length of Test Production 20 GPM		
Static Level —— ft. Pumping Level —— ft. Drawdown —— ft. Sp.Cap. —— GPM/ft.		
Quality (Remarks		
Water Use Primary Unusual W Secondary Tertiary :		
Other Data Water Water Quality Logs Other Data		
Date 11 15 1991 Mess. 22.08 perstor 7-19 Water Date 12 04 1996 Mess. 21.45 02-01		
Date 04/9/9/ Mess. 23 · 20 /-0 (		
14		
Recorded By D, Coker Date Record Collected 12 04 1996 (20		
	max) Repo	reing Agency O(
Remarks Ouner's well wor I a war work.	+ + + +	mp.
2 Measured yield 20 GPM in 1951.		MP. + O, 90 Typ of Cource
<u>,                                    </u>	+++	Well No. 8528 60
93.4384 29.93 A.O. Bhoto		<u> </u>





85-28-601





# TEXAS WATER DEVELOPMENT BOARD WELL SCHEDULE

State Well Number - 85 29 102 River Basin - Rio Grande - 23			27 39 52	•	Webb 479 - 99 26 35	Source (	of Coords -	1
Owners Well No.	_ Location 1	/4,	1/4, Sectio	n, E	Block	, Surv	ey	_
Owner - Laredo Country	Club	Driller - W	oods Drillin	g Co.				
Address			Tenant/Op	er				_
Date Drilled - 10/04/1993	•	ource of Dept	h - D					
Aquifer - 124LRDO LAREDO FORMA WELL Const.	1 IUN	Casing			wett type	- W User	-	
CONSTRUCTION Method - HYDRAU	LIC ROTARY RFORATED OR SLOTTED	Material Screen			PLASTIC	Well Screen		Zone (
LIFT DATA - Pump Mfr.	Type	_ SURMERSTR	IF DIMED	No Stanos			romto_ Setting	
ciri ban rump nii .	·yp	500 KN310	CE TON	No. Stages	— ¦	(in.)	From	To
Bowls Diam i	n. Setting -	ft. Co	lumn Diam		in.			
					11	C 6	0	440
Motor Mfr	Fuel or Power - I	LECTRIC MOTO	R H	orsepower -	2	S 6	440	660
					3	0 5	660	800
YIELD Flow GPM Pu	mp GPM Mea	s.,Rept.,Est	:- <u>-</u>	_ Date	4			
					5			
PERFORMANCE TEST Date-	Length of Test		_ Productio	ก				
				-	7			
Static Levelft. Pumpin	g Levelft. Di	awdown	ft. Sp.Ca	p				
OUALITY (Bosoules					9			
QUALITY (Remarks-		<del></del>	<del></del>	<del></del>	10			
WATER USE Primary- IRRIGATION	Secondary		Tortiary		11   12			
WHICK USC PITERS 9- INCIDENTION	Securitar y-		. iei ciai y-		12   13			
OTHER DATA AVAILAIBLE Water	lowels. M. Guality.	M logs_D	Other O	ata_	14			
ALIEN DAIN MATERIALE MATER	Levels- in quality-	n Logs- D	Other D	aco-	15			
WATER LEVELS Date- 10/04/	1993 Measurement-	-65.00			16			
- "	Measurement-	22.30			17			
7	iouser embite				18			
Recorded By	Date !	Record Collec	ted or Undat	ed- 11/05/199				
•								

Reporting Agency - TEXAS WATER DEVELOPMENT BOARD

REMARKS

Measured yield 280 GPM with 100

feet drawdown after pumping 2 hours
in 1993. Cemented from 0 to 10 and
340 to 440 feet. Pump set at 420
feet.

RQ-06

Aquifer - 124LRD0 Well No. - 85 29 102

# State of Texas

A You A I	WELL RI	WELL REPORT	2	13-571-5067 813-571-5067 14-4 7-50-01
COUNTY CONTEST:		Nes in City Liberits direction		
Poleta the legal deach Scale Texas County (SCRIPTION:	foton balow with distance and direction from two i General Highway Map and ettach the map to this	ntersecting section or survey has, form.	or he must locate and identify the	dentify the well on an official
Distance and direction from two has a see ATTACHED MAP	reacting section or survey lines	AGRETACI NO.	SERVEY NAME	
) TYPE OF WORK (Check): (2) New Well Desparing () Reconditioning Plugging	4) PROPOSED USE (Check):  Domestic Dindustrial Monitor  A inflation Test Well Injection	□ Public Supply □ De-Watering	DRELLING METHOD (Check):  Alf Mud Robay	Diven
) WELLLOG: she Drilling: 2-28 1953	TOTAL Surface (%)	7) BOREHOLE COMPLET	ETION: CAAA 16 1	Undermand
10-4 10 23	\$" 640 800	3	ig	*
From (ft.) To (ft.) D	Description and color of formation material	8) CASHO, BLANK PIPE, AND WELL SCREEN	, AND WELL SCREEN DATA:	
0-1 Top	of soil	New Steel Plastic, etc. Dia. or Perf., Sodied, etc. (n.) Used Screen Mg., if comme	Setting rotes From	To Screen
440 - 485 Sandy	A Sport Cocan	6" N " " Per t	440	660 3/5"
650 - 800 Se	May Shale GraxIE	OF SEMENTING DA	287.44(1)] 2 a b 340 a	k L
(Use rever	песевалу)	1994 made de mare de la companya de	ods Orill	igt Baskt
Depth to pump bowle, sylinder, jet, etc.	TEXAS NATURAL TEXAS NATURAL CONSERVATION	ପ୍ରୟ	ION Sab Installed [Rule 287.44(2)(A)] eve Installed [Rule 287.44(2)(A)]	X X
Type Test All Pump	Bailer Jetted Estimated	Pitess Adapter Used     Approved Alternative	Paule 287	<del>-</del>
15) WATER QUALITY: Did you knowingly penetrate any constituents?	ary strata which contained undesirable		ft below land surface D	Date 10-4-53
Type of water? 10 to 10 Vesa, such Type of water? 10 to 10 t	Depth of strate 440 - 640	12) PACKERS:	Туре	Capin
ereby certily that this well was drilled by me (or under my sup at failure to complete items 1 thru 15 will result in the tog(s) but	envision) and that each iring returned for comple	and all of the statements herein are don and resubmittal. WELL DRILLER'S LICENSE	rue to the best of my knowledge a	owiedge and belief. I understand
051077 QQ seaved	0.190	haredo	(Stan)	78044
great (al	(Librard Well Diller)	(Signed)	(Registered Driller Trainee)	
esse sitach estáric log, chemical analy	rise, and other pertinent information, if available	e. For TWC use on	r Well No. Local	Located on map





SWN:	85-29-102						•		ė			Samp	ole No	.AQ	-06	
County:	Webb				Name	Lar	:00 C	thuc	ry Cl	ch			Date	12-	3-90	6
Aquifer(s):	Laredo			A	ddress	:141	5 COUN	try (	Club [	)r.			Ву	<u>: J,</u>	<u>Der K</u>	2 N
				owner's		Lari	: do, T;	<u> </u>		-						
		A+B		owner's	well #				· · · · · · · · · · · · · · · · · · ·	-						
	Bottle1	Bottle 2	Bot	tle 3	Bott	le 4	Bottle	e 5	Bott	le 6	Bot	tle 7		Tota		-
1	$\mathcal{B}$	(2)							,					SUB		
1	500 ml	liter		) ml	1 li								,	Sampl	es	
	Aniens	Cations	Nitr			ioactiv	rity							<u> </u>		
	CATOMS	2 ml/		ml	2 ו									All filte	ed	
	/m/	HINO	Н :			10								nless of		
	1/1/03	(Nitrie)	(Sulf		<del></del>	Nitric)								stipu		<u>-</u>
	INW		J.,	Time	in .			_		11.	フゕ		Start	ing pH		
Water Level	UTM_LSD	Remark Noe	itry	•	out			Samp	ole time	160	$\frac{2}{2}$	_	•	-	f 0.02N	
Temperature (000		29°-4 c		Weati					vell use	<u> </u>	K	<u>.</u>		_	of Samp	
Specific Conducta		2830 um	hos/cm			_//_							End	ling pH		
pH (00400)	8.59			Samplin	<del>† .                                     </del>	177	17 1		T	Υ	<del>1</del>	1	η	<del> </del>		Τ
Eh (00090)	mv.			Time:	<del>1</del>		1620		ļ	<u> </u>	ml.	pH	ml.	pН	ml.	pΗ
nenol ALK (8224	•		g/l	рН:			859				—				<del> </del>	ļ
Total ALK (39086	•		_	Temp:	28,4	27,3	29.4			ļ	ļ		<b>.</b>	ļ	<del> </del>	<del> </del>
Carbonate (00452	) meq/l	16,8 m	g/I	Eh:	<u> </u>		ļ <u>.</u>			<u> </u>		<u> </u>			<del> </del>	ļ
	3) meq/l	234,3m	g/l	Cond.	2660	2680	2830		, ,		<u> </u>	<u> </u>		<u> </u>	<del> </del>	<b> </b>
Total Cations(+)	<del>/A</del>						other no	tes:								ļ
Total Anions (-)	<del></del>			1608								<u> </u>			<u> </u>	
Total Hardness (0	0900) /0			well	perje	d 31	imes	W.	5m N	I	L					
Dissolved Solids	1410				•											
									-							

SWN: County: Aquifer(s):	8529/02 Webb Laredo Fm	<u> </u>			Name Address s well f	: 141	redo 15 Con redo	entes	Club	b Dr.	3	Samp	Date	. <u>AB</u> : 12-	3-9	6
	Bottle B 500 ml	1 Bottle A 1 liter		itle 3		le 4 iter	Bottl	e 5	Bott	ie 6	Bot	tie 7		Tota SUB Sampl	. Ć	3
	1 ml HNO3 (Nitric)			Time	· in					Not	! {/	Here	ui wjei	All filter nless of stipu ting pH		
Water Level	UTM LSD	Remark		Į.	o in e out			Samn	la time	16=	20		Stan	_	0.021	
Temperature (000		29:4	C	Weat					vell use					_	of Samp	
Specific Conductan		2830						. "	von 030	170		-≛	Fnc	_     ''''.    \ ding pH	•	
pH (00400)	8.59	<u>~.a</u>				Dice	harge	. 0,0	e,					g p		
Eh (00090)	mv.			Time:			1620				ml.	рН	ml.	рН	ml.	рН
Phenol ALK (82244	 !)		mg/l	рН:	1		8.59	1								
Total ALK (39086)			_ mg/l	Temp:			29.4									
Carbonate (00452)	med	ı/l	_mg/l	Eh:					<u> </u>							
Bicarbonate (00453	) med	и	_mg/l	Cond.	2660	268	2830				1					
Total Cations(+)						C	other no	otes:								
Total Anions (-)				160	8 pu.	mp o	<b>√</b>									
Total Hardness (00	900)	_		]							<u> </u>		]	<u> </u>		
Dissolved Solids		_											<u> </u>	1		
														1	1	]

# TEXAS WATER DEVELOPMENT BOARD WELL SCHEDULE

State Well Number - 85 29 203			Coun			•	
River Basin - Rio Grande - 23	Zone - 2	Latitude - 27	35 50 Longit	ude - 99 25 (	15 Source of	f Coords -	1
Owners Well No.	Location	1/4, 1	/4, Section	, Block	, Surve	<i></i>	
Owner - Enron 011 & Ga	s Co.	Driller - Rid	hardson Water				
		Wel	1 Drilling Co.				
Address		•	Tenant/Oper				
Date Drilled - 01/02/1981	•				Source of	Nt H	-
Aquifer - 124LRDO LAREDO FORMA	FION	01		Well Type	:-W User	-	
WELL Const.  CONSTRUCTION Method - HYDRAU	I TO DOTARY	Casing Material - :	citti		l Carina an Bi	lamb Sina (C	,
CONSTRUCTION NCCIRC - ITHOU	LIC NOTALI	Screen	JILCE		Casing or B		•
Completion - PE	RFORATED OR SLOTTI	D Material - !	STEEL		Open Hole (		(
					Cemented fro		
LIFT DATA - Pump Mfr.	<del></del>	Type - SUBMERSIBLE	PUMP No. St	ages	Diam.	_	-
Bowls Diami	n. Setting -	ft. Colu	un Diam	in.	, , ,	From	To
					C 5	0	189
Motor Hfr	Fuel or Power	- ELECTRIC HOTOR	Horsepower		S 5	189	231
YIELD Flow GPN Pu	CDM	Mane Dont Est	Data		C	231	420
TIELD FION- GPA PE	mp ern	meas., kept., cst-	Date-		i	420	483
PERFORMANCE TEST Date-	Length of 3	Test-	Production-		i		
					1		
Static Levelft. Pumpin	g Levelft.	. Drawdown	ft. Sp.Cap		)  		
QUALITY (Remarks-				10	)   }		
					•		
WATER USE Primary- UNUSED	Secondary-	· · · · · · · · · · · · · · · · · · ·	Tertiary-	12	1		
OTHER DATA AVAILATRIC MAAN	Laurala M. Gual	San M. Laws D.	Other Date	13	•		
OTHER DATA AVAILABLE Water	Levels- H Qual	ity- N Logs- D	utner vata-	14 15	Ī.		
WATER LEVELS Date- 01/02/	1981 Measureme	nt90.00		16	<u> </u>		
Date- 12/03/	1996 Measuremen	rt71.20		17			
1 1 1 24	/ _			18	:		
Recorded By J. DerYOA	/ Us	ite Record Collecter	or updated- 12/0.	3/1996 19	'  		
Reporting Agency - TEXAS WATER	DEVELOPMENT BOARD		0.00				
REMARKS -		MP=TOP	0 of Casin	9			
Unused industrial well. Meas	ured	+2.4'					
yield 50 GPM in 1981.		, - , ,					
Well inopera	tive at i	his time.					
Well Near 90	production	well #2		and the second of the second o		- Maringa America (America) and spain requirement (America)	

Send original or certified mail to Texas Department of Visitor Resources P. O. Box 13067 Austin, 12468 78711	ATTENTIO		State of ATER WE	LL I	ħ	J ge Notice on R	everse Side	For TDWR Well No Located on Received:	5-25	
ENTINOIT				B		71.88		<del></del>		
	eme)	_		(\$270	<b>107</b>	AFDI	(City)		State)	(Zip)
County Webb		6	_ miles in	N.	E.	direct	tion fromLat	ober		
	Killiam	& Heard	- Amoco	لملا_	يا	B _ 1				
Driller must complete the legal descript	tion to the rigi	ht	•			Block No	Tow	nahip		
with distance and direction from two in tion or survey lines, or he must locate a well on an official Quarter- or Half-Sca	and identify th	18	Abstract	No		Surve	y Name			
General Highway Map and attach the m			Distance	and di	rectio	n from two inters	ecting section or su	rvey lines		
			See attach	ed map	<b>.</b>					
3) TYPE OF WORK (Check):	41 PROPOS	ED USE (CM	rek):			5) DRILLING	METHOD (Check):			_
☑New Well ☐ Deepening	i _		ial C Public Sc	ipply	l		☐ Air Hammer			
☐ Reconditioning ☐ Plugging  6) WELL LOG:	<u> </u>	m Test We	····	T			Cable Tool	Jerred [	Other_	
WELL COU.	Dia. (in.)	METER OF H From (ft.)	To (ft.)	1 .		HOLE COMPLET n Hale	ION: Straight Wall	٥	Underreer	med
2 /2 /22	6 3/4	Surface	<i>L</i> 83	(	Gran	rel Packed	C) Other			
Date drilled <u>1/2/81</u>		<u>[</u>	<del> </del>	1	If G	ravel Packed give	interval from _		t. to	·
From To		nd color of fo	rmation	8) (	CASIN	G BLANK PIPE	. AND WELL SCRI	EEN DATA:		
(ft.) (ft.)		material		-	New	Steel, Plaste		<del></del>	ing (ft.)	<del>-</del>
0 - 4 Surface Soil 4 - 15 white Sand & fine		<u>u</u>		Dia.	or	Perf., Sigtte		From	To	Git Car Scr
15 - 20 Rust Shale & gra	avel	<del></del>		-			from 189*			
20 - 42 Rust Shale w/bli	ack fine	sand					120° to 183			
42 - 72 sandstone w/gra										
72 - 104 gray shale w/g: 104 - 124 gray shale	ravel st	reak		-	-			<del> </del> -		
124 - 145 blue shale w/s	gravel st	reak								-+
145 - 197 blue shale										
197 - 207 blacksand 207 - 227 black sand					L					
227 - 248 blue sandy she	ale			١.			CEMENTING D			
248 - 268 blue shale w/s		)				tes from I used		. 10		
268 - 351 blue shale				c	emen	ted by				
351 - 371 blue sandy sha 371 - 391 blue shale	rre			9)	WAT	ER LEVEL:	Company	or Individue		
391 - 444 blue shale sar	ıdy _						_ft. below land surf	ace Date		
444 - 454 black sand						an flow		Oste		
454 - 472 black sand	.1-		<u></u>	101	BAC	KERS:	Type	Depth		
472 - 479 hard sand black 479 - 484 black sand	:K			1		Neopreme		188 & 41	•	
									·	
				ļ						
				11)	TVD	E PUMP:		<del> </del>		
				1	] Turt	_	■ Submers	uble	Cylind	er
				] :	Oth	r	·		<del></del>	
	ide if necessar	y)		٥	epth	to pump bowis, c	ylinder, jet, etc.,			_ft.
13) WATER QUALITY: Old you knowingly penetrate any	strata which i	contained und	esirabie	12)	WEL	L TESTS:		·	· ·	
water? Tyes TNo If yes, submit "REPORT OF UNI				=	Typ	e Test: 🔲 Pui	mp 🗀 Bailer	基 Jetted	<b>□</b> 5π	imated
Type of water?	Depth of	strata					m withf		after	hrs.
Was a chemical analysis made?	□ Yes	□ No		<u> </u>			2" air line,	<u> </u>		
						nder my supervisi ist of my knowled	ige and belief.			
NAME Jesse N. Richards			Water Well	Oriller	s Regi	stration No	167	79		
ADDRESS 808 Lincoln	<del></del>	)· .	Alice.	Tex	as '	78332	(State)		(Zio)	
Istreet or AFD		ha. I.	, (Cit		<b>.</b>	d				
(Signed) (Wate	Well Driller	· colde		100.0	DAN	uson Water	Company Nam	1 <del>01</del>	c	
Please attack-electric log, chemical ana	lysis, and othe	r pertinent in	formation, if a	reileble	t.		85-2	9-2	<u>3</u>	



#### TEXAS WATER DEVELOPMENT BOARD

WELL SCHEDULE

*'	WELL SCHEDULE				
•		~ 2 ²			, ,
1 .		<b>1</b> 4			
Aquifer (AMCI)	Field No.	State Well	. No. <u>85 - 29</u>	211	
					1 2
	Owner's Well No.	Commity	-22.5 <u>6</u>		
1. Location:1/h,1/h Sec	, Block Survey			i i i	i
8.9 71 DE OF 69.100.	a				
				1 1	1 ]
2. Owner: SULOM CATTLE COL	Address:			.1 ! 1	! ]
Tenant:  22 Driller:				1 ! !	1 1
22 Driller:	1 (1) A+Er (s)e Address:			<b>!-+-</b>	+
3. Elevation of					1
· ·		ned by	\$<		
4. Drilled: //-/8 19 6 0	; Dug, Cable Tool, Rotary,		CASING & BLAN	שמידם א	
		Cemented		to	ft.
5. Depth: Reptft. Meas	^{n.}	Dian.	Туре	Setting	
6. Completion: Open Hole, Straight Wall, Under	reamed, Gravel Packed	(in.)	rype	from	to
1					
7. Pump: Mfgr.	^{Туре}	7 "	ولين مهدام ا		
No. Stages , Bowls Diam. in.	. Setting ft.	/	يه مساور کې	1-4 1	- Z
		r1		11.	
Column Diamin., Length Ta	ilpipen.	1 (			i
8. Motor: Fuel San Make 8	& Model HP.	1			
				<b> </b> -	
9. Yield: Flow gpm, Pump gpm		1 1			l
10. Performance Test: Date Length	of Test Made by	[ ]		1	
		[]		, ₋ -	1
Static Level 1 rt. Pumping Level				] ]	
Production 1 2 gpm Specific C	Capacity gpm/ft.			li	
11. Water Level: 21.5 4rt. rept. 9-3	120 That Art Alue a	a / a = -		) (1 a. @box	
Hater Level:	19/0 anova 12/12/12/12/12	400 # Z	which is_4	7-2 5 tr. pel	Surface.
64.15 n. 1 12-3	19 above		which is	ft. abov	ve surface.
Casas	below			bero	ow w
THE COURT OF THE C	2.0				79 a
t. Tept. 2-3	19 shove below				We surface.
	19 above		which is	ft. above	ve surface. ve surface.
rt. rept.	19 above below		which is	ft. above below below below	ve surface. ow
	19 above below		which is	ft. above below below below	ve surface. ow
ft. rept. meas 12. <u>Use</u> : Dom., stock, Public Supply, Ind.,	19 above below  Irr., Waterflooding, Observation Not to		which is	ft. above below below below	ve surface. ow
ft. rept. meas.  12. Use: Dom., Stock, Public Supply, Ind., 13. Quality: (Remarks on taste, odor, color, etc.	19 above below  Irr., Waterflooding, Observation Not to.)	Jsed,	which is	ft. abor beld	ve surface. ow
ft. rept. meas.  12. Use: Dom., Stock, Public Supply, Ind., 13. Quality: (Remarks on taste, odor, color, etc.	19 above below  Irr., Waterflooding, Observation Not to	Jsed,	which is which is which is	ft. abor beld	ve surface. ow
12. Use: Dom., Stock, Public Supply, Ind., 13. Quality: (Remarks on taste, odor, color, etc.  Temp. 76 °F, Date sampled for analysis	19 above  Irr., Waterflooding, Observation, Not to.)  9-3 12 Laboratory 75 4-2	Jsed,	which is	rt. abor beld show beld to be be beld to be be beld to be be beld to be beld to be be beld to be beld to be be be beld to be be	We surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  13. Temp °F, Date sampled for analysis_  Temp °F, Date sampled for analysis_	19 above Delow Irr., Waterflooding, Observation Not to.) 9-3000 Laboratory Laboratory	Scree	which is which is which is	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  13. Temp °F, Date sampled for analysis_  Temp °F, Date sampled for analysis_	19 above  Irr., Waterflooding, Observation, Not to.)  9-3 12 Laboratory 75 4-2	Scree	which is which is which is which is which is which is well SCRI	rt. abor beld show beld to be be beld to be be beld to be be beld to be beld to be be beld to be beld to be be be beld to be be	We surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  13. Temp °F, Date sampled for analysis_  Temp °F, Date sampled for analysis_	19 above below Irr., Waterflooding, Observation Not to.)  9 2 1 Laboratory 7 5 Laboratory Laboratory	Scree	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp°F, Date sampled for analysis_  Temp°F, Date sampled for analysis_  Temp°F, Date sampled for analysis_  14. Other data available as circled: Driller's I	19 above Delow Irr., Waterflooding, Observation, Not to.)  9 3 1 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,	Scree	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp°F, Date sampled for analysis_ Temp°F, Date sampled for analysis_ Temp°F, Date sampled for analysis_  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,	19 above Delow Irr., Waterflooding, Observation, Not to.) 9 2 2 2 2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp°F, Date sampled for analysis_  Temp°F, Date sampled for analysis_  Temp°F, Date sampled for analysis_  14. Other data available as circled: Driller's I	19 above Delow Irr., Waterflooding, Observation, Not to.) 9 2 2 2 2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp.	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp°F, Date sampled for analysis_ Temp°F, Date sampled for analysis_ Temp°F, Date sampled for analysis_  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp.	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,  15. Record by:  Source of Data	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,  15. Record by:  Source of Data	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,  15. Record by:  Source of Data	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,  15. Record by:  Source of Data	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,  15. Record by:  Source of Data	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,  15. Record by:  Source of Data	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,  15. Record by:  Source of Data	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Fumping Test,  15. Record by:  Source of Data  16. Remarks:	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  Temp. °F, Date sampled for analysis  14. Other data available as circled: Driller's I  Formation Samples, Pumping Test,  15. Record by:  Source of Data	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Fumping Test,  15. Record by:  Source of Data  16. Remarks:	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas.  12. Use: Dom., Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Fumping Test,  15. Record by:  Source of Data  16. Remarks:	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  1h. Other data available as circled: Driller's I Formation Samples, Pumping Test,  15. Record by:  Source of Data  16. Remarks:	19 above below Irr., Waterflooding, Observation, Not to.)  9-2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp°F, Date sampled for analysis.  Temp°F, Date sampled for analysis.  Temp°F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Pumping Test,  Source of Data  16. Remarks:  Thick  9	19 above Delow Irr., Waterflooding, Observation, Not to.)  9 3 Laboratory Laboratory Laboratory Log, Radiosctivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp°F, Date sampled for analysis.  Temp°F, Date sampled for analysis.  Temp°F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Pumping Test,  Source of Data  16. Remarks:  Thick  9	19 above Delow Irr., Waterflooding, Observation, Not to.)  9 3 Laboratory Laboratory Laboratory Log, Radiosctivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Fumping Test,  Source of Data  16. Remarks:  Thick  9	19 above Delow Irr., Waterflooding, Observation, Not to.)  9 3 Laboratory Laboratory Laboratory Log, Radiosctivity Log, Electric Log,  Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Pumping Test,  15. Record by:  Source of Data  16. Remarks:	19 above Delow Irr., Waterflooding, Observation, Not to.) 9 2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log, Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Pumping Test,  15. Record by:  Source of Data  16. Remarks:	19 above Delow Irr., Waterflooding, Observation, Not to.) 9 2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log, Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. short beld short b	ve surface.
ft. rept. meas.  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Pumping Test,  15. Record by:  Source of Data  16. Remarks:	19 above Delow Irr., Waterflooding, Observation, Not to.) 9 2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log, Date / 19	Scree Dim. (1)	which is which is which is which is which is Type	ft. abor beld ft. secting from	ve surface.
ft. rept. meas  12. Use: Dom. Stock, Public Supply, Ind.,  13. Cuality: (Remarks on taste, odor, color, etc.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  Temp °F, Date sampled for analysis.  14. Other data available as circled: Driller's I Formation Samples, Fumping Test,  Source of Data  16. Remarks:  Thick  9	19 above Delow Irr., Waterflooding, Observation, Not to.) 9 2 Laboratory Laboratory Laboratory Log, Radioactivity Log, Electric Log, Date / 19	Scree Dim. (1)	which is which is which is which is which is which is well SCRI	ft. abor beld ft. secting from	ve surface.

SWN: 852930/ County: Webb Aquifer(s): Laredo FM	Name: Killam Cattle Co.  Address: P.O. Box 499  Laredo, Tx  owner's well #	ple No. <u>AQ -05</u> Date: <u>12-3-96</u> By: <u>J. Der∀oN</u>
$\mathcal{B}$ $\mathcal{A}$ $\mathcal{C}$	ile 3 Bottle 4 Bottle 5 Bottle 6 Bottle 7 ter 1 liter	Total SUB- Samples
l ml HNO3 (Nitric)	Not filtere	All filtered unless other- wise stipulated
	Time in	Starting pH
Water Level 64.15 LSD Remark Static	Time outSample time 1435	ml. of 0.02N to
Temperature (00010) 27.6 c	Weather well use Stock.	ml. of Sample
Specific Conductance (00094) 5050 umhos/cm	Outside Temp	Ending pH
pH (00400) 8,34	Sampling point faucet at well	
Eh (00090)mv.	Time: 1405 1410 1420 1425 1430 1435 ml. pH	ml. pH ml. pH
`henol ALK (82244) mg/l	pH: 8.6 8.17 8,28 8,23 8,33 8.34	
Total ALK (39086)	Temp: 26.8 26.9 27.0 27.0 27.5 27.6	
Carbonate (00452) meq/l 9.6 mg/l	Eh:	
Bicarbonate (00453) meq/l 322 mg/l	Cond. 5070 5070 5070 5050 S050	
Total Cations(+)	other notes:	
Total Anions (-)	other notes:  Pump on 1400  Cloudy at 1420  pumped off at 1430	
Total Hardness (00900) 30	Cloudy at 1420	
Dissolved Solids 3/00	pumped off at 1430	
<u> </u>	Estimated yield 86PM	



# Texas Water Development Board Well Schedule

State Well No. 85 29 40 1 Previous Well No. County WERE	Source
River Basin RIO GRANDE 23 Zone 2 Lat. 2733 30 Long. 99 2	7 18 of Coord
Owner's Well No Location1/4, 1.4, Section, Block,	Survey
Owner JOHN MAUN  Driller WOODS DRILLI  Address 916 Calle Del Norte Raredo 78041 Tenant/Oper.	<i>U</i> 6
Date Drilled 10221988 Depth 1000 Depth Datum D Altitude 490	Source of Alt. Datum
Aquifer Well Type W User [	
Well Const. Construction Method HYDRAULIC ROT. H Material PVC	
Completion OPEN O Screen Well Screen Open Hole (  Lift Data Pump Mfr. Type SUBM S No. Stages  Type SUBM Diam.	ank Pipe (C) or Slotted Zone (S) O) om 10 to 240 Setting (feet) From
1 2 3	0 240
	240 300
Yield Flow GPM Pump GPM Meas., Rept., Est. Date 3	
Performance Test Date 10-dd-80 Length of Test & 11K Production 30 GPM	
Static Level — ft. Pumping Level — ft. Drawdown ft. Sp.Cap. — GPM/ft.	
Quality (Remarks	
Water Use Primary Secondary Tertiary 8	
Other Data Water Water V Logs Other Data  Other Data  Other Data	
Date 10 19 1988 Meas. 195 • 11	
Water Date Date Levels Date 12 Meas. 93 • 1	
Date Meas.	
14	
15	
Recorded By BR Date Record Collected 04 14 1994 (20 max) Rem	
Remarks 1 Republication Republ	orting Agency O/
2	
3	1
4	
5	Aquifer 05 29 110
6 92-0023 92-0023 94991	Well No. 85-29 -40

State of WATER WELL REPORT P. O. Bex 13087 Austra, Tenas, 78711 ATTENTION OWNER: Confidentiality Printege Natice on Reverse Side Wonn Hann A.R.L.A. Farms 500 Calle Del Nortelaredo Tex. 78041 (Statu) (Zini Laredo 2 LOCATION OF WELWEBD n City County (N.E., S.W., etc.) (Town) Legal description: Driller must complete the legal description to the right with distance and direction from two intersecting section or survey lines, or he must locate and identify the well on an official Quarter- or Half-Scare Texas County General Highway Map and attach the map to this form. Section No. Abstract No. , Distance and direction from two intersecting section or survey See attached map. On 85 4) PROPOSED USE (Check): 3) TYPE OF WORK (Check): 51 ORILLING METHOD (Check): □ Or ven New Well ☐ Despening X Oomestic □ Industrial □ Monitor □ Public Supply Mud Rosary Air Hammer Diletted Bores Reconditioning Plugging ☐ Irrigation ☐ Test Well ☐ Injection ☐ Other ☐ Air Rotary ☐ Cable Tool ☐ Other. 6) WELL LOG: DIAMETER OF HOLE 7) BOREHOLE COMPLETION: From (ft.) A Open Hate Date Drilling: Straight Wall ☐ Underr 10-19 19 88 6 3/4 1000 Surface Gravel Packed Mother Cased to 2401 10-22 19 88 Completed. If Gravel Packed give interval . . . from From (ft.) To (ft.) Description and color of formation 8) CASING, BLANK PIPE, AND WELL SCREEN DATA: Steel, Plastic, etc. Perf., Slotted, etc. Screen Mgf., if commercial Gage Casino Screer New or Used 6 Caliche 0 65 Siltstone Yellow ኧ From 65 240 Shale Gray PVC Plain 230 77 U Sand Gray White Open 240-300 230 250 Sandy Shale Gray White 1000 Red & Green Stks Plug set 300-340 9) CEMENTING DATA [Rule 319 44(b)]
Camented from 240 ft. to 140 ___ ft. No. of Secks Used Basket, Plug & Circulation (Top Woods Drilling Co. Cemented by... 10) SURFACE COMPLETION ☐ Specified Surface Slab Installed [Rule 319,44(c)] Pitless Adapter Used [Rule 319.44(d)] Approved Alternative Procedure Used [Rule 319.71] 11) WATER LEVEL: 10-22-88 NONE ft. below land surface Date. aom. 121 PACKERS Type Depth TEALS WATER COMMISSIO None 13) TYPE PUMP ☐ Jet X Submersible ☐ Cylinder ☐ Turbine Other_ (Use reverse side if necessary) Depth to pump bowls, cylinder, jet, etc., 15) WATER QUALITY: 14) WELL TESTS: Did you knowingly penetrate any strata which contained undesirable water? 

Yes No water? 🔲 Yes **2** Jerted □ Estimated Type Test. 2 Pump □ Baixer

I here by certify that this welf was grilled by me (or under my supervision) and that each and all of the statements herein are true to the best of my kingwiedge and belief. I understand that failure to complete items 1 thru 12 will result in the log(s) being returned

COMPANY	NAME (Type or Print)	Water Well Driller's License No	<u> </u>	<del> </del>
ADDRESS	F.1.Eom 6489			<u> 130-2</u>
	'Street or AFDI	(City)	(State)	(Zip)
(Signed)	Jeny Woods	(Signed)		

>0392 (Rev. 06-10-85)

Was a chemical analysis made?

If yes, submit "REPORTIOF UNDESIRABLE WATER230 - 280
Type of water? Depth of strata

Depth of strata...

Tyes Mo

emical analysis, and other pertinent information, if available.

TEXAS WATER COMMISSION COPY

30_gpm with 140 ft. drawdown after 2_hrs.



SCHOOL

CALLE DEL NORTE



Bottle1 Bottle 2 Bottle 3 Bottle 4 Bottle 5 Bottle 6 Bottle 7 Total SUB-500 ml 1 liter	SWN: County: Aquifer(s):	852940/ Webb Laredo FM			A owner's	Name: .ddress		CALL CALL					Samp	Date	. <u>AG</u> : <u>12-</u> : <u>J</u>	4-91	6
HN03								Bottl	e 5	Bott	e 6	Bot	tle 7	;	SUB	۔ ۔	3
Water Level         9.3./ LSD         Remark         3/4 / c         Time out         Sample time /0/45         ml. of 0.02N to           Temperature (00010)         27.3 c         Weather         well use Donlestic         ml. of 3 sample           Specific Conductance (00094)         23/0 umhos/cm         Outside Temp         Ending pH           Ph (00400)         8.8//         Sampling point Fave of Afwell         Ending pH           Sampling point Fave of Afwell         Sampling point Fave of Afwell         Ph (00400)           Eh (00090)         mv.         Time: /025/030/035/040/0455/050/ml. pH ml. pH ml. pH         ph ml. pH           Total ALK (39086)         276 mg/l         Temp: 27./ 27.2 27.3 27.3 27.3 27.3 27.3 27.3         Temp: 27./ 27.2 27.3 27.3 27.3 27.3 27.3         Temp: 27./ 27.2 27.3 27.3 27.3 27.3 27.3         Temp: 27./ 27.2 27.3 27.3 27.3         Temp: 27./ 27.2 27.3 27.3 27.3 27.3         Temp: 27./ 27.2 2		HNO3			Timo	in	-			,	Vot	f,/	Here	ui wjse	nless o	ther-	
Temperature (00010)    27,3 c   Weather   well use	Water Lavel	937 ISD	Remark 4/1	L.,					Samn	le time	114	15	-	Sian			v to
Specific Conductance (00094)   22/0 umhos/cm   Outside Temp   Ending pH			<del></del>	1/2	1				_Odinp w	ieli use	Do	nest.	_	<del></del>	<del>-</del>		
Sampling point   Faucet At well	•	•		os/cm				<del></del>	- <b>"</b>	011 400	1000	<i>/ 10</i>	2.	Enc		•	
Eh (00090) mv. Time: /025 /030 /035 /040 /045 /050 ml. pH ml. pH ml. pH henol ALK (82244) 24 mg/l pH: .874 8.8/ 8.8/ 8.85 8.85 8.85 8.85 8.85 8.85	•	` <u> </u>	23.71				Fave	ext	44 u	14/					<b>-</b>		
Total ALK (82244)											1050	ml.	рН	ml.	рН	ml.	рН
Total ALK (39086)    276 mg/l   Temp:   27.1   27.2   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3   27.3	•	44)	24 mg	<b>j/</b> I	pH:	T	T	T	]	T		1					
Bicarbonate (00453) meq/l 278,2 mg/l Cond. 2020/2/60/2/80/2/90/22/0 other notes:  Total Anions (-) fump on 1022 function for the pump on 1022 function function for the pump on 1022 function fu	Total ALK (3908	6)	276 mg	<b>j/</b> I	Temp:	T		T	T —	1							
Bicarbonate (00453) meq/l 278,2 mg/l Cond. 2020/2/60/2/80/2/90/22/0 other notes:  Total Anions (-) fump on 1022 function for the pump on 1022 function function for the pump on 1022 function fu	Carbonate (0045)	2) med	И <u>28.8</u> mg	₁ /1	Eh:												
Total Cations(+) Total Anions (-)  Total Hardness (00900)  Dissolved Solids  Other notes: $pump on 1022$ $pL = 173.2$				1/1	Cond.	2020	2/60	2180	2190	2190	22/0			<u> </u>			<u> </u>
Total Anions (-)	Total Cations(+)	/						other no	otes:			ļ					
Total Hardness (00900) 4  Dissolved Solids 1320	Total Anions (-)				pump	OON 1	022	72	າ '						<u> </u>		
Dissolved Solids 1320	Total Hardness (	00900)	*******		1 6	1/2	. [ ]	/) ••	_								
	Dissolved Solids	1320	2_		/					:					<u> </u>		
													<del> </del>		<b> </b>		

# TEXAS WATER DEVELOPMENT BOARD WELL SCHEDULE

State Well Number - 85 29 402 River Basin - Rio Grande - 23	<del>-</del>		34 53		Webb 479 - 99 29 27	Source of	f Coords -	1
Owners Well No.	Location	1/4, 1/	4, Section	n, I	Block	, Surve:	y	
Owner - Dr. Emrique Ber	nav ides	Driller - Davi	ld E. De La	t Cruz				
Address 5/0 /N/e/N/e Date Drilled - 12/11/1975 D Aquifer - 124LRD0 LAREDO FORMAT WELL CONSTRUCTION Nethod - CABLE-1	Depth - 300 ft.	Source of Depth - Casing Haterial - S	- D 1		480 ft. Well Type	Source of i	•	-
		Screen  D Material - S			Ì	Well Screen Open Hole (	or Slotted	-
LIFT DATA - Pump Hfr				No. Stages		Cemented fro	toto	
<del></del>						(in.)	From	
Bowls Diam in	n. Setting	Tt. Com	R VIAS					105
Notor Mfr	Fuel or Power	- ELECTRIC MOTOR	Н	orsepower -	•	C 7 S 7	0 185	185 205
					•	C 7	205	230
YIELD Flow- GPM Put	EPM GPM	Meas.,Rept.,Est		Date-	4	S 7	230	252
PERFORMANCE TEST Date-	Length of T	est-	Production	n-	•	C 7	252	300
Static Levelft. Pumping	<del></del>				7			
QUALITY (Remarks-					10			
WATER USE Primary- UNUSED	Secondary-	1	Tertiary-		11   12   13			
OTHER DATA AVAILABLE Water I	Levels- M Quali	ty- N Logs- D	Other D	ata-	. 14			
WATER LEVELS Date- 12/11/1 Date- / /	1975 <b>Heasuremen</b> <b>Heasureme</b> n				16  17			•
Recorded By J. Derton	) Da	te Record Collected	i or Update	ed- 12/05/19	18   96 19			
Reporting Agency - TEXAS MATER I REMARKS - Unused domestic well. Measure yield 25 GPM with 125 feet down in 1975. Cemented from ( 180 and 259 to 270 feet.	ed raw-	UTM-	Tape	w,//no	of fai	I free.		·

pump moperative.

					<u></u>
Send original copy by certified eail to the	State of	Texas		For TVDB	use only
Texas Water Development Board				Well Me.	10 BAP
P. O. Sox 13087 Austin, Texas 78711	WATER WELL	REPORT		tocolved:	74
1) OFFICE:			_	_	
Person having well drilled br.	Tena Mann (Nese)	Address771	or MPD)	<u>Larez Ter</u>	(State
	if is			4	131314
Landowner(Fame		Address(Street	or UD)	(City)	(State
2)LOCATION OF WELL:				,,,,,	
County 'Ja's		m in 1	direction from	Larada	
		**	direction from_		
Locate by sketch map showing landmer himmy number, etc.*	rks, roads, creeks,		ecion with distance one or survey lines		is from
	30.526	i -	•		
i i i i i i i i i i i i i i i i i i i	بر جلراتي	Labot	<del> </del>	League	
1 / E	NAA Borch	\$leek		. Servey	
//	4	Abstract No			
(Use reverse side if necess	ary)	CHESTA META STATE SI	Et) of Section		
,					
3) TYPE OF WORK (Check):	4) PROFOSED USE (Check):		5)TYPE OF WELL		_
New Well X Despening	Domestic Industr	riel Municipal	Rotary	Drives	Dug
Reconditioning Plugging	Irrigation Test W	iell Other X	Cable X	Jettoš	Bored
6)WELL LOG:			<del>-L</del>		
Dismeter of holein.	Depth drilled 30 ft.	Depth of completed we	11 <u>300</u>	ft. Sace drille	ed
<u> </u>	All measurements made from	3 ft.above	ground level.		
From To Descri	ption and color of	9) Casing:		<del></del>	<del></del> -
(ft.) (ft.) for	astion meterial		New Steal	X Plastic	Other
1 2 -r.vel	275-29 water said	Commuted from	en Trans	ft. to	<u> </u>
<del></del>	* 294-300-rray clay	Disseter	Surface Setting		3
.44		(inches)	from (ft.)	To (ft,)	Gage
35 126 gray sandy smale		7 1 St. 1	ecave surface	2•7	
12é 13é water sasa			* '		
136 160 rev gangy shale					
160 170 11407 5008		10) SCREEN:		<del></del>	<del></del>
		. type			
175 185 , Resig shale		Perforated		Slotted X	
1:5 205 water seed		Diameter	Setting		Slat
205 230 may mandy anle		(inches)	From (ft.)	To (ft.)	Size
37 2-2 water as id		7 4.3.	_1.5	275	
252 275 : sasiy asala			230	254	
(Use reverse side if 7) COMPLETION (Check):	necessary)	11) WELL TESTS:			
Straight wall Gravel packed	Other	Was a pummp cest	made? Yes	No. If ye	e hoursmi
Under reamed Open Ho	10	Yield:	spm with	ft. drædown	aftern
8) WATER LEVEL: Static level 7. ft. below la	and surface Date 12 11 77	Sailer rest	gpm with 135	ft ir avdovn	After
Artesian pressurelbs. per s	quare inch Date	Artesian flow			
Depth to pump bowls, cylinder, jet	, etc.,ft.	Temperature of	vater		
below land surface.		12) WATER QUALITY:			
		Was a chemical	analysis made?	Tes X	No
		Old any strata	contain undesirabl	e water? Y	es X 110
		Type of water?		depth of strata	<u> </u>
I harahu n	ertify that this well was drill	ed by me for under my	supervision) and t	hat	
	il of the statements herein are				
NAME 1	<u>. 11.1</u> w	ater Well Orillers Reg	istracion No	7	
(Type or Print)	/	·			
ADDRESS 11 11 17 1	(tare)	To.	<u>/ - · · · · · · · · · · · · · · · · · · </u>		
(Street or RFD)	City	)		(State)	
(Signed)	N4 (4-1	<u></u>	Company Name	•	
(Wath Well of	TITEL (		(Company 3-2	-,	,
Name and Alexander less theretail	analysis and other nertices (	oformation if speilsh	سے کیے۔	-9/	10 =

File ori, . wi-Texas Water Development Board P. O. Box 13087 Amatin, Texas 78711

#### State of Texas WATER WELL COMPLETION AND PLUCGING REPORT

For TMDB use only
Well No. R.5-19- 4E
Form GM 33 received
Form GM 34 received

_					<del></del>
i)	Well Owner: br. Jan R. Mann	721 Lindenweed Street or MFD	Lane		State
2)	Landowner: Name	Street or AFD	Gity		State
1)	Intended Use: Industrial .; Hunicipal .; Irrigation	Domestic ; Stock ;	Other Z		7444
•)	Location Of Well: County Wasa Labor	League	Ab	stract No	<del></del>
	Mul Mul Svi SEi of Section Block (Circle as many as known)	. 16Sur	vey		
	(NE, SW, etc.) Town	. Doe reverse s	ide to sketch map	of well location	nhowing dista
	from adjacent section or survey lines, or to landmarks, ro	ads, and creeks.			
	CONTLE	TOW AND PLUGGING DATA			····
)	Driller Bavid E. Ba La Craz Regis	tration Number <u>67</u>	Address2	310 Li spie	1 .
`	Party Completing Or Flugging Well				
)	Drilled 12 7 11 / 1975; Dug ; Cable Tool E:				
í	Dimeter Of Hole 2 inches, from 1 to 300 feet, and				
ĺ	Casing and Coment:				
,			<del></del>		
	(inches) From (feet) To (feet) From (feet		ent Baskets or rs, Depth (feet)	From (fact)	To (feet)
	7 St. Carriage 2.7	C8341	in terke 150	smrlace .	1:3
			159-170	159	17)
)	Weil Log: All measurments made fromfeet above ground level.	11) Sketch Of	Well: Show method including a	l of completion and all casing and ces	
	From To Description and color of formation	<del></del>			
	(ft.) (ft.) material				
	2 35 yellow sand signs				
	12 1:0 Par 4 1 1	]		,	
	136 170 crey sendy stelle		1	l :	/
	175 125 (ray sandy sable			المد	•
	125 205 Water sand			مفني	
	2:0 252 ster sace				-
	275 294 water son			ve'	
	23 30 1010 9 ()	; 	8	76.5Ke	
		ļ		أ* الحاق	
		!	$\chi_{\mathcal{C}}$	<b>y</b> "	
			4	1.	( · .)
			, [	T1	
		i	<b>X</b>	1 . July	-17 t
				159	-176
		t	No.		-4 /
			· 1		a d
				700 FF	7
				1	
					····
)	Fresh Water-Bearing Zone(s): Depth in feet to top of 1	5, Thickne	ss <u>20</u> feet.		
)	Undesirable Water-Bearing Zone(s): Depth in feet to top o	f <u>125</u> , Thickt	less <u>3</u> feet.		
)	Static Water Level(s) 7's feet below tend surface.	Was the water level measu	red after penetrat	ing the first wat	er-bearing
	zone , or after drilling to total depth ? Check app				
)	Describe in detail the type, volume and manner of placemen string. Describe and give percent of all dement additives	:		cement behind eac	h casing
		<del>-132 - :- 3% -i</del> :	<del> </del>	•=	
)	Was undestrable water exclusion or retention or plugging p  If so describe method(s) used.				
	<u> </u>	<del></del>	nerest 1	15 70	
)	Attach electrical, gamma ray or other mechanical log(s), w	ater analyses, and other	pertinent data if	available.	
			·		
	,	VALIDATION			
.)	We, the party performing the undestrable party exclusion	retention plug	ging (Check	applicable box) o	perations,
	X de d C X - 4 91 and the lan	downer or party having ve	ell drilled, deepen	ed or otherwise a	ltered,
		t the undesirable water e			
	were performed in the manner described above.				
	sets battormen in the neither described sonas.				

Send Original Copy by Certified Mail to the Texas Water Development Board P. O. Box 12386 Austin, Texas 78711 State of Tex

REPORT OF

UNDESTRABLE WATER

For T.W.D.B. use only:
Well No. 85-29-4E
Received:
Form GW 7
Form GW 8
Form GW 9

Company Name:_ Address:			
AUG1 633	2313 Li aria		EXES
	(Street or RFD)	(City)	(State
2. Landowner:	Pr. Jest S. Para		
Address:	721 Linianuasi		.8X43
	(Street or RFD)	(City)	(State
3. Person Having	Well Drilled:	3273	· · · · · · · · · · · · · · · · · · ·
Address:	(Street or RFD)	(City)	(State
	•••		
4. Location of We	11: County 4035	Labo	r
NU NF CU4	SE4 of Section	Rloc	k
			direction.
		NE, SW, etc.)	
from	Lare:\	<del></del>	
5. Date Well Dril	Town)  led: 15/11/75		
	, .		
described well deen encounter	14/76	vegetation, to land or person having t	d, or to fresh wate he well drilled has



85-29-402

#### TEXAS WATER DEVELOPMENT BOARD WELL SCHEDULE

Latitude - 27 31 41   Longitude - 99 28 55   Source of Coords - Owners Ne11 No.	te Well Number - 85 29 706	Previous Well Nu	mber -	County	- Webb 479			
Owner - Catholic Commetary  Oriller - David E. De La Cruz  Address P.D. BOX 2366 Laredo X  Tenant/Oper.  Date Drilled - 12/08/1965 Depth - 236 ft. Source of Depth - D  Altitude - 464 ft. Source of Alt N  Mell Type - M User - E  ELL Const.  Cossing  Cossing Completion - PERFORATION  Completion - PERFORATED OR SLOTTED  Completion - PERFORATED OR SLOTTED  Raterial - STEEL  Completion - PERFORATED OR SLOTTED  Completion - PERFORATED OR SLOTTED  Completion - PERFORATED OR SLOTTED  Noter Hfr	er Basin - Rio Grande - 23	Zone - 2	Latitude - 27 31	41 Longitud	e - 99285	5 Source	ce of Coords -	1
Address   P.O.   Box   Z366   Laredo   X   Tenant/Oper.	ers Well No	Location	1/4, 1/4,	Section	, Block	, Su	<b>ve</b> y	<del></del>
Attervilled - 12/08/1965 Depth - 236 ft. Source of Depth - D Altitude - 464 ft. Source of Alt M Well Type - W User - ELL Const. Casing  RELL Const. Casing  ONSTRUCTION Method - HYDRAULIC ROTARY Material - STEEL Screen   Method - HYDRAULIC ROTARY Material - STEEL    Completion - PERFORATED OR SLOTTED Material - STEEL   Depth Hole (0)    LIFT DATA - Pump Mfr. Type - SUBMERSIBLE PUMP No. Stages   Diam. Setting    LIFT DATA - Pump Mfr. Type - SUBMERSIBLE PUMP No. Stages   Diam. Setting    LIFT DATA - Pump Mfr. Type - SUBMERSIBLE PUMP No. Stages   Diam. Setting    LIC 7 0 0    LOOT Mfr Fuel or Power - ELECTRIC MOTOR Horsepower - 2   S 7 175    LIFT DATA - Pump No. Setting - Fuel or Power - ELECTRIC MOTOR Horsepower - 2   S 7 175    LIC 7 0 0    LOOT Mfr GPM Pump GPM Meas., Rept., Est Date   4   S 7 212    Length of Test Production   GPM 6    Length of Test Production   GPM 6    Length of Test Production   GPM 6    Length of Test Production   GPM 7    LATER USE Primary - IRRIGATION   Secondary   Tertiary   12    LATER USE Primary - IRRIGATION   Secondary - Tertiary   12    LATER LEVELS Date   12/08/1965   Measurement   -76.00    Date   17    LATER LEVELS Date   12/08/1965   Measurement   -76.00    Date   18    LATER LEVELS Date   12/08/1965   Measuremen	Owner - Catholic Cemeta	r <b>y</b>	Driller - David	E. De La Cruz				
Casing   Casing	ress P.O. Box 236	56, Lared	o Tx Te	nant/Oper.				
Casing		•	Source of Depth - D	Altitude -				
CONSTRUCTION Method - HYDRAULIC ROTARY Screen  Completion - PERFORATED OR SLOTTED Material - STEEL  Completion - PERFORATED OR SLOTTED OR SLOTT		LON	Casing		well type	- W US	ser -	
Completion - PERFORATED OR SLOTTED Haterial - STEEL   Depth Hole (0)    LIFT DATA - Pump Hfr.		IC ROTARY				Casing o	or Blank Pipe	(C)
Commented from			_					
Diam.   Setting   From   Setting   Diam.   Setting   Setting   From   Setting   Setting   From   Setting   Setting   From   Setting   Setting   From   Setting   Set	Completion - PER	FORATED OR SLOTTE	) Material - STE	EL				
(in.) From     (in.)			CHIMEDOTINE BIL					
Dotor Mfr	UAIA - Pump ATr.		Type - Submerstree in	m no. Stag	es	Ulam.   (in )	Setti	ng(feet)
	ls Diam in	. Settina -	ft. Column	Diam				10
C					1	C 7	0	175
STELD Flow-   GPM Pump-   GPM Meas., Rept., Est-   Date-   4   S 7   212	or Mfr	Fuel or Power	- ELECTRIC MOTOR	Horsepower	- 2	S 7	175	195
ERFORMANCE TEST Date- Length of Test- Production- GPM 6 7 7 8 7 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9					3	•	195	212
ERFORMANCE TEST Date Length of Test Production GPM 6  tatic Level ft. Pumping Level ft. Drawdown ft. Sp.Cap GPM/ft 8  ### CALITY (Remarks 10  ### ATER USE Primary- IRRIGATION Secondary Tertiary 12  ### INTER DATA AVAILABLE Water Levels- M Quality- Y Logs- D Other Data 14  ### ATER LEVELS Date 12/08/1965 Measurement 76.00  ### Date 12/04/1996 Measurement 80.50 Sfeel fape 17  ### Recorded By Derford Date Record Collected or Updated 12/04/1996 19  ### Recorded By Derford Date Record Collected or Updated 12/04/1996 19  ### Park S 0 to 175 feet	LD FlowGPM Pum	p <b>CPH</b>	Meas.,Rept.,Est-	Date				232
Static Level	500MANOT TO 0	1				•	232	235
RALITY (Remarks	FORMANCE IEST Date-	Length of 10	est Pr	oduction-		•		
NALITY (Remarks	tic level - ft Pumning	level ft.	Drawdown- ft.	Sn.Can		•		
ALLITY (Remarks—  INTER USE Primary- IRRIGATION Secondary- Tertiary-  INTER USE Primary- IRRIGATION Secondary- Tertiary-  INTER DATA AVAILABLE Water Levels- M Quality- Y Logs- D Other Data-  INTER LEVELS Date- 12/08/1965 Measurement76.00  Date- 12/04/1996 Measurement80.50 Sfeel fape  INTER LEVELS Date- 12/04/1996 Measurement80.50 Sfeel fape  INTER LEVELS Date- 12/04/1996 Measurement76.00  Date Record Collected or Updated- 12/04/1996  INTER LEVELS DATE DEVELOPMENT BOARD  REPORT OF CASING  Owner's #1 well. Measured yield 25  COMMENT OF TOP OF CASING  Commented from 0 to 175 feet						•		
ATER USE Primary- IRRIGATION Secondary- Tertiary- 12   13   13   13   14   15   15   15   15   16   16   16   17   18   17   18   18   19   19   19   19   19   19	LITY (Remarks-					1		
OTHER DATA AVAILAIBLE Nater Levels- M Quality- Y Logs- D Other Data-  MATER LEVELS Date- 12/08/1965 Measurement76.00 16 16 17 17 18 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19						İ		
OTHER DATA AVAILABLE Water Levels- M Quality- Y Logs- D Other Data-  MATER LEVELS Date- 12/08/1965 Heasurement76.00 Date- 12/04/1996 Heasurement80.50 Sfeel fape 17  Recorded By	ER USE Primary- IRRIGATION	Secondary-	Ter	tiary-	12	1		
ATER LEVELS Date- 12/08/1965 Measurement76.00 Date- 12/04/1996 Measurement80.50 Sfeel tape 17  Recorded By						•		
ATER LEVELS Date- 12/08/1965 Measurement76.00 Date- 12/04/1996 Measurement80.50 Steel tape 17  Recorded By	ER DATA AVAILAIBLE Water L	evels-M Quali	ty- Y Logs- D	Other Data-		-		
Date- 12/04/1996 Measurement80.50 Steel tape 17   18   18    Recorded By 1, Derto W Date Record Collected or Updated- 12/04/1996 19   19    Reporting Agency - TEXAS WATER DEVELOPMENT BOARD MP = Top of CASIN9   19   19   19   19   19   19   19	ED LEWELS - 0.00 12/09/1	06E Wassimen	± 76.00			1		
Recorded By 1, Derto W Date Record Collected or Updated- 12/04/1996  Reporting Agency - TEXAS WATER DEVELOPMENT BOARD  REMARKS - Owner's #1 well. Measured yield 25  GPM with 64 feet drawdown in 1965.  Commented from 0 to 175 feet	Date 12/06/1	905 Measuremen 006 Measuremen	t70.00 t80.50 SV	feel tape	. 17	•		
Recorded By 1, Derto W Date Record Collected or Updated- 12/04/1996  Reporting Agency - TEXAS WATER DEVELOPMENT BOARD  REMARKS - Owner's #1 well. Measured yield 25  GPM with 64 feet drawdown in 1965.  Commended from 0 to 175 feet			00.00		_	Ī		
Reporting Agency - TEXAS WATER DEVELOPMENT BOARD  REMARKS -  Owner's #1 well. Measured yield 25  GPM with 64 feet drawdown in 1965.  Commented from 0 to 175 feet	orded By <u>J. Dertol</u>	<u>/</u> Da	te Record <u>Collected</u> o	r Updated- 12/04/		i		
Owner's #1 well. Measured yield 25  GPM with 64 feet drawdown in 1965.  Commented from 0 to 175 feet	orting Agency - TEXAS WATER D	EVELOPMENT BOARD	m n = Tal	of Casin	/9			
Computed from 0 to 175 feet	Owner's #1 well. Measured yie		+0.7	7	1			
			ble to me	+ E-line	•	_	Λ	
chree tank (cement).		UNI	10, 6 1 1000	/	torage ?	tank(c	cement).	
Well pumps into ground Storage trank (cement).		We	II pumps INY	o ground =	45.470		. /	

AQ-08

	r Develop	v. Soard pitol Station	(CASH)	LERS 10		( Texas	DATA RE	PORT		For use by Well No Located on		Ż
Austin, Te	78711		OTHE				- N			Hap co.	De se	_
1) Well 0	waer:	Catholic	Cement	ery	12	19 Sau	inders		Lar	edo	Te	2 X 8
2) - Land O		Catholic	700		12	I9 Sa	ınders		Tar	edo	144	- X
		Industrial   1M	-	-			•		37			-
		1: County We	• –	_			l acetus		Abstract N			
		SE of Section_								o		
(Comm or		-) 35 01 3651108	Block	NG	30144	<b>y</b>			*			
	es in	44-4-1	-1			·	au nda		·			_
from I	aredo	Texas	<u></u>		<u> </u>	ا لود م روح م	o de	MERICAN	<u>se</u>			
				vey lines,	location w	ith dista	nces from roads, and	h; two sec	tion			
		Standard			ILLERS L					10/	2/ :=	
Method of	drilling:	Stancard				^			e drilled_	12/	3/ 33	_
From	To	Desc	All measuription and	color of	de from	O fr	. above gr	ound le		iption and	calor of	_
(ft)	(ft)		formation mate			(ft)	(ft)			mation met		
1	3	Surface				195		G1	cay san	dy shal	Le	
3	15	Yellow	rock			212	232		ter sa			
15	26	Gray cl	ay			232	236	<u> </u>	ray cla	У		
26	36	Water s				i						
36	162	Great ca										
		JILY 34	ndy shal	Le							_	
162	171	Wet san		nid )					.w			
162 171	-		d (hun									_
	171	Wet san	d (hun				(Use	contin	uation shee	ts if neces	sary)	
171	171 175	Wet san	d (hun		COMPLET	TON DATA		contin	uation shee	ts if neces	sary)	
171	171 175 195	Wet san	d (hun			TON DATA		contin	uation shee	ts if neces		
171	171 175 195	Wet san Gray cl Water	d (hun	nid )		s ing		contin	ustion shee			
171 175	171 175 195	Wet san Gray cl Water	d (hun	Type: 0	CA	S LNG		contin	Type	SCR	EEN	
171 175	171 175 195 cor	Wet san Gray cl Water	d (hun	Type: 0	CA	S LNG		contin	ſ-	SCR		
171 175 Streight Under rea	171 175 195 conval1 = cked = cked = cked = cked	Wet san Gray cl Water	d (hun	Type: 0 Cemenced to 17	CA  1d	SELNG	fe.	contin	Type	SCR	Slocce	_
171 175 Straight Under rea Gravel pa	171 175 195 conval1 ::	Wet san Gray cl Water	d (hun	Type: 0 Cemenced	CA	SING  Section  Section	fe.	contin	Type	SCR	Storce	8
171 175 Straight Under rea Gravel pa	171 175 195 conval1 ::	Wet san Gray cl Water	d (hun	Type: 0 Cemenced to 17	CA 14  Ne from 1  it.	SENG Section ft) OVE	íc.	contin	TypePerforated	SCR	Storce Setting	<b>8</b>
171 175 Straight Under rea Gravel pa	171 175 195 conval1 ::	Wet san Gray cl Water	d (hun	Type: 0 Cemented to 174 Diameter (inches)	CA 14  Ne from 1  it.	SENG Section ft) OVE	it. s to (ft)	contin	TypePerforated	SCR	Storce Setting	
171 175 Straight Under rea Gravel pa	171 175 195 conval1 ::	Wet san Gray cl Water	d (hun	Type: 0 Cemented to 174 Diameter (inches)	CA 14  Ne from 1  it.	SENG Section ft) OVE	it. s to (ft)	contin	TypePerforated	scr 4 - from (f	Storce Setting	<u>*</u>
171 175 Straight Under rase Gravel pa	171 175 195 conval1 ::	Wet san Gray cl Water	d (hun	Type: 0 Cemented to 174 Diameter (inches)	CA 14  Ne from 1  it.	SENG Section ft) OVE	it. s to (ft)	contin	TypePerforated	scr 4 - from (f	Store Setting	
171 175 Straight Under read Gravel part Open hole Other	171 175 195 com wall [] cked []	Wet same Gray cl water  Water  I hereby each and trice log, chemical	d (hum ay sand	Type: 0 Cemented to 170 Diameter (inches) 7110 D	ca id	SING  Settle  it)	to (ft) 235  (or under the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the heat of the hea	ay sup of ay k	Perforate Diameter (inches)  ervision) as nowledge and	from (f	Slocce Setting t)	3
171 175 Straight Under rea Gravel pa Open hole Other	171 175 195 com wall [] cked []	Wet sand Gray classes water water MPLETION	d (hum ay sand	Type: 0 Cemented to 175 Diameter (inches) 7110 D	from 1 from 1 from 1 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 from 7 fr	SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECU	to (ft) 235  (or under the heat complete available avail	ay sup of ay k	Perforate Diameter (inches)  ervision) as nowledge and	from (f	Slocce Setting t)	8
171 175 Streight Under rea Gravel pa Open hole Other Please at	171 175 195  conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil C	Wet sand	d (hum ay sand	Type: 0 Cemented to 175 Diameter (inches) 7110 D	ca id	SING  Settli  Sove  Led by me e true to  David  informati.  t pump pic	to (ft) 735  (or under the best on if avai	ay sup of ay k	Perforate Diameter (inches)  ervision) and overledge and Critz  following:	from (f	Sloces Satting  S. 67	3
171 175  Streight Under rem Gravel pa Open hole Other  Please at If well w	171 175 195  conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil C	I hereby each and by your company	d (hum ay sand	Type: 0 Cemented to 175 Stameter (inches) 7110 D  t this well state man and other stalled the WATER	cald a Ne froe 1 from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from	SING  Settli  Sove  acco  led by me  a true to  David  informati.  t pump pic	to (ft) 735  (or under the best on if avai	my sup of my k	Perforate Diameter (inches)  ervision) and and and addressed and Cruz following:	from (f	Sloce.  Setting t)	1 2
171 175 Streight Under rem Gravel pa Open hole Other Please at If well w	171 175 195  conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil Conveil C	Wet sand	d (hum ay sand	Type: 0 Cemented to 175 Stameter (inches) 7110 D  t this well state man and other stalled the WATER	cald a Ne froe 1 from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from (c. from	SING  Settli  Sove  acco  led by me  a true to  David  informati.  t pump pic	to (ft) 735  (or under the best on if avai	my sup of my k	Perforate Diameter (inches)  ervision) and overledge and Critz  following:	from (f	Sloce.  Setting t)	1 2
171 175  Straight Under rea Gravel pa Open hole Other  Please at If well w  Static w  ft. belo	171 175 195  convalid med converted	Thereby each age by your company of 76 Surface mping level	d (hum ay sand  y cercify tha ali of the ai analysis, or if you in	Type: 0 Cemented to 175 D:ameter (inches) 7110 D  t this well state mine and other stalled the WATER	from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 from 1 fr	SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECULIA SECU	to (ft) 235  (or under the heat on if available complete DATA	sy supof sy k	Perforate Diameter (inches)  ervision) and and and addressed and Cruz following:	from (f	Slocce Setting t)	3 5 5 2
171 175 Streight Under tem Gravel pa Open hole Other Please at If well w	171 175 195  convalid  med converted	I hereby each and by your company	d (hum ay sand	Type: 0 Cemenced to 17: Diameter (inches) TilO D  t this wal statements and other statlad th  WATER  Pum Des Typ	ca  id	SING  Section  Sectio	to (ft)  235  (or under the hear the he	ay supof ay k	Perforate Diameter (inches)  ervision) as nowledge and Cruiz following:	from (f	Slocce Setting t)	1 2

•



Fine red dashed lines indicate selected fence lines

to controlled inundation

Areas covered by dashed light-blue pattern are subject

85-29-706

photographs taken 1975 and other source data

Purple tint indicates extension of urban areas

This information not field checked. Map edited 1980

FOR

SWN: 85-29-766 County: Webb Aquifer(s): Laredo Fri	2 - V		:Catholic :PO BOX Z Laredo,T	366	·		Samp	ole No Date By	. <u>AQ</u> : <u>/2 -</u> : <u>.</u>	-08 4-90 Der	tow
Bottle 500 ml			le 4 Bottl	e 5 Bott	le 6	Bott	le 7		Tota SUB Sampi	. Ć	3
1 ml HNO3 (Nitric)		Time in			Not	(f/1	tere	) ui .wjse	All filter nless of stipu		
Water Level 80.50 LSD	Remark State			Sample time	/3.4	-		Start		0.02N	to
Temperature (00010)	27:0 c	Weather		well use				<u> </u>	_	of Sample	
	2340 umhos/cm				LAL	<u> </u>	<u>.</u>	Fnc	- ling pH	•	ì
pH (00400) 8.70	<u> </u>	Sampling point	Discharge	ofwell	<b>,</b>				g p		
Eh (00090) mv.			/325/330		T	ml.	рН	ml.	рН	ml.	рН
henol ALK (82244)	20 mg/l	1	8.49 8.59	· · · · · · · · · · · · · · · · · · ·	1				1		
Total ALK (39086)	340 mg/l		26,3 26,8					<b> </b>	1	1	
- · · · · · · · · · · · · · · · · · · ·	1 24 mg/l	Eh:	1 1 1 1	719 102					1		
•	1 366 mg/l	Cond. 2600	2670 2600	24602370	2340						
Total Cations(+)			other no								
Total Anions (-)		Pumpon	1317						•		
Total Hardness (00900) 9		1									
	- 3				İ		Ţ				
	-			•	, Į						
Dissolved Solids 133	<u>-</u> <u>3</u>										



# TEXAS WATER DEVELOPMENT BOARD WELL SCHEDULE

State Well Number - 85 29 707 River Basin - Rio Grande - 23		ber - Latitude - 27 28 30			Source of	Coords -	1
Owners Well No.	Location	_ 1/4, 1/4, Sect	tion, Blo	ck	, Survey	<i></i>	_
Owner - Fausto Bermudez		Driller - Woods Drill	ling Co.				
Aquifer - 124LRDO LAREDO FORMAT WELL Const. CONSTRUCTION Method - AIR ROT	epth - 260 ft. IOM	Source of Depth - D  Casing Material - PVC, FII Screen Material - PCV, FII	Altitude – 4 We BERGLASS, OTHER PL	65 ft. 11 Type ASTIC	- W User - Casing or Bi Well Screen	lank Pipe (C or Slotted	-
·			-	į	Cemented fro	-	
LIFT DATA - Pump Mfr		ype - SUBMERSIBLE PUMP	No. Stages		Diam. (in.)	Setting From	
Bowls Diamin	. Setting	ft. Column Diam.		_ in.	• •	FIUE	
Motor Hfr	Fuel or Power	- ELECTRIC MOTOR	Horsepower -	2	C 5 S 5	0 200	200 260
YIELD Flow GPN Pum	p GPM	Meas.,Rept.,Est-	Date	3  4			
PERFORMANCE TEST Date- Static Levelft. Pumping QUALITY (Remarks-	<del></del>			9  10			
WATER USE Primary- DOMESTIC	Secondary-	Tertiary	<b>/-</b>				
OTHER DATA AVAILAIBLE Water L	evels- M Qualit	y- N Logs- D Other	r Data-	13  14			
WATER LEVELS Date- 06/26/1 Date- / /				15  <b>16</b>   17			
Recorded By J. Derron	Dat	te Record Collected or Upo	iated- 12/05/1996	18  19			
Reporting Agency - TEXAS MATER D REMARKS - Measured yield 30 GPM with 11 drawdown after pumping 3 hour 1984. Comented from 0 to 30 f Pump set at 231 feet.	5 feet s in eet.		·		·		

unable to contact owner.

Please use black
Send original copy uy
certified mail to the
Touse Department of Water Resources

# State of Texa. WATER WELL REPORT

Texas Water Well Ornlers Source
P. O. Sex 13067
Austin, Texas 78711

P. O. Soit 13087 Austin, Texas 7871	n <del>112121</del> 11-000-1909 	ATTE	NTION OWN	IR: Confide	nnality P	rivilege	r Natice on Rever	rse Side	Austin, Texas	78711	
1) OWNERFB	usto Berm	udez		. Address .	3220	St	ewart	Lared	o, Texas	780	
2 LOCATION OF	WELL:										do do
County	Webb-			, miles in .	(N E	. S W .	erc.)	lineat de	(Town	.,	
				☐ Legal de			-				
Driller must comple with distance and di	rection from two i	intersecting sec	•					Town	nship	<del></del>	
tion or survey lines, well on an official C	luarter- or Helf-Sci	ele Texas Cour	ty				Survey	ecting section or su	New lines		
General Highway M	ap and attach the r	map to this for	п.	****							
3) TYPE OF WOR	w (65)	T		See atta	ched ma	-	85-29-5			······	~
New Well	Deepening		IED USE (Che ic □Industri		Sunnh	ı	_	METHOD (Check):  Air Hammer	∏ Drives ∏	Road	
Reconditioning	Plugging		n 🗆 Test We					☐ Cable Tool			
WELL LOG:		DIAI	METER OF H		7)	BORE	HOLE COMPLET	ION:			
		OIL III./	Surface	To (ft.)		□ Oper	n Hole rei Packed	Straight Wall  Other Case		nderreamed	
Date drilled 6/	25/84	6 3/4		260	] `			interval from _			
	<del></del>	<u> </u>		L							
From To (ft.) (ft.		Description a	material	WII	8)	CASIN	G, BLANK PIPE	AND WELL SCRE	EN DATA:		<del></del>
0 4	Topso		- <u>ye</u> 3	t <del>kow</del> _	Dia.	New	Steel, Plaste Perf., Slotte	d, stc.	Settin	ıg (ft.)	Gage Casin
4 25		stone		low		Used		, if commercial	From	To	Scree
25 205 205 256		y shale.	gra		5"	new	P.V.C.	piain perf.	200	<u>200</u> 260	<del>  }</del>
256 260	Shale		gra								
									ļ		1_
<del></del>	····-	<u></u>		<del></del>	+-	CEME	MTING DATA	(Rule 319.44(b))	<u>.l,</u>	<del></del>	Ц
	· · · · · · · · · · · · · · · · · · ·				$\neg$			tr. to	urface	·	ft.
			····		4			ft. to			
					→		ted by Wood	ket & Grav ds Drillin	ig Co.		
							FACE COMPLETS scified Surface Sla	ION ib Installed (Rule 3	19.44(c)1		
			<del> </del>			••		(Rule 319.44(d))			
			· · · · · · · · · · · · · · · · · · ·			☐ Apr	proved Alternativ	e Procedure Used (	Rule 319.71]		
					<b> </b> 111	WATE	R LEVEL:				
	······	O E		BI	$\exists$	Sta	tic level <u>52</u>	ft, below land	surface Da	<u>6/26/</u>	<u>′84</u>
						Art	esian flow <u>NON</u>	e	De	te	
	· · · · · · · · · · · · · · · · · · ·	<del>- 11</del>	<u>IL 1019</u>	راق ا	12)	PACK	ERS:	Туре		Depth	
			C 1 0 150	<u> </u>	<del></del>			none		<del></del>	
			PT. OF		13)	TYPE	E PUMP:				
	<del></del>	WAIEK	RESOUR	CES	_  ·	□ Turb	ret 🗆 snic	🖄 Submers	ible [	Cylinder	
	(Use reverse	side if necessar	v)		7	⊒ Othe		ylinder, jet, etc.,	221		
15) WATER QUA		<u> </u>			`	Deptit (	to pump bowis, c	ymreter, jac, atc.,			
Did you know weter?	ingly penetrate and	y strata which i	contained und	esirable	14)		L TESTS:		_	_	
If yes, supmit	"REPORT OF UN	DESIRABLE	WATER"	.256			e Test: 🏋 Pur	mp Bailer m with <u>115</u> 1	☐ Jetted	□ Estima	
Type of water Was a chemica	? Light sa de?	Cepth of ☐ Yes	strata _ZU.3: CXNo	=250	-	Tield	90 ــــــــــــــــــــــــــــــــــــ	m with <u>11,1,</u> 1	t. Drawdown a		nrs.
l here by knowledg	certify that this w mand belief. I und	ell was drilled I derstand that fi	oy me (or und	er my superviete items 1	rision) an thru 12 v	d that will res	each and all of th ult in the logis) b	e statements hereit	are true to t	M best of m	it IA
COMPANY NAME	Woods Dr	illing (	Co	Wate	r Well Dr	riller's	License No. 22	20			
ADDRESS P	.0. 6489					xas	78042				
(Signed)	Street or RF	0) • ————————————————————————————————————	•		City)		-	(State)	15.2	9-70	7
Please attach electr		Water Well On				•.	(Registered Drille	er Trainee)	For TDWR u	**************************************	<del>ار</del> ج
	~								Located on n	mo ye	7/47



#### Texas Water Development Board Well Schedule

State Well No. 85 29 708 Previous Well No. County	ue66 479
River Basin Rio Carande 23 Zone 2 Lat. 2730 16 Long.	099 28 33 f 7
Owner's Well No. Location 1/4, 1.4, Section, Block WW Corner Matinches Market St.	
Owner Maria Luisa Trevindo Driller UNKNOUN	
Address 900 No Malinche Lareds Tenant/Oper. 722-4228	)
Date Drilled Depth Depth Depth Datum Altitude  Aquifer Well Type	Source of Alt. Datum User
Well Const. Construction Method Material 5 to 5	<del></del>
Completion Screen Material Sho. Stages	Casing or Blank ?:pe (C) Well Screen or Slotted Zone (S) Open Hole (O) Cemented from
Bowls Diam in. Setting ft.Column Diam in.	Diam. Setting (feet) (in.) From To
Motor Mfr. Power elec: E Horsepower 2	< 7
Yield Flow GPM Pump GPM Meas.,Rept.,Est. Date 3	
Performance Test Date — Length of Test — Production — GPM	
Static Level — ft. Pumping Level — ft. Drawdown — ft. Sp.Cap. — GPM/ft.  Quality (Remarks Was old Wm: used for yard water, wark	
Water Use Primary Dom H Secondary Tertiary	
Other Data Water Water Y Other Other	
Date 1204 1994 Mess. 32. 92 1-01	
Water Levels  Date  Date  Meas.  12	
Khell in in Apt. 906, under planter	
Recorded By D. Coker Date Record Collected 12 44 1990	max) Reporting Agency 6 /
Remarks	mp. +1.10'
902,	Elec. line
	Aquifer
	Well N. 2529 70 8
95-0384 29-033	/

Laredo ASR Project 12-2- 96 13:15 13:20 7.57 7.00 Tem 22.6 24.5 252 25.7 7334 7330 7380 13:25 13:35 13:45 13:55 7,56 7,58 7.59 7,57 25.9 25.6 253 25.6 25.3 7310 7110 7110 Faret on Sinch PT, 10 formue! suple mare pe - mp by E - 12 wasold win P. P. DUS 5442/5 21/6m/ TOS 835 504 373 c/ Pollition Colon Lib 5, A1 From Mas Theriwing





85-29-708





Dad sine indianege gran in the same indianation in the

### Water Quality Field Data

SWN: 85-29-708							;	Samp	le No	.AC	9-C	2
County: Webb	Namo	: M. L	1 7.	eli	40			_	Date:	12	-4-	96
Aquifor(s): Laredo	Addres									P		
		40	red	0	780	41						
	owner's well	#	···			-						
Bottle1 Bottle 2 Bot	tle 3 Bot	tle 4	Bottl	e 5	Bott	e 6	Bottl	e 7		Total		
		liter	A	٢	E	3	, c	-		SUB-	=	7
<b>M</b> . \ / \	opril 1	liter	1	liter	5	/•دن	1	/: te	- 9	Sample	)S	ر
		lioactiv	ity		<u> </u>							
	1	Μ̈́			1	~/				All filter		
I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\	NO			_	no,				less oth		
(Nitric) (Shift		(Nitric)			F	رس				stipul	ited	
Water Level 32.92 LSD Remark	Time in	12:3	, 3	• • • • • • • • • • • • • • • • • • •	la Alma	11/	05		Stant	ng pH	0.000	
	Time out	11								- \/	0.02N	
	Weather	<u>/T,</u>	700			•	ra			·/ \	Sampl	18
	Outside Temp		7°F	12	iv.	Pur	ou		Enq	[ng pH		
pH (00400) <u>7.59</u>	Sampling point									Ι		T
mv.		13/4						рН	ml.	pH	ml.	рН
henol ALK (82244)mg/l	<u> </u>	7.54				_			1355	7.59	1400	<del>                                     </del>
Total ALK (39086) 244 mg/l	Temp: ススペ	14.5	25.2	25.7	25.7	25,6	ļ	3،کد	ļ	25.6		×5.4
Carbonate (00452) meq/l21.6_ mg/l		1					<u> </u>					ļ
Bicarbonate (00453) meq/l 253, 8 mg/l	Cond. 7270	7330	7830	7340	7338	73/0		7200		7110		7110
Total Cations(+)		, ol	her no	tes:			L					
Total Anions (-)	yard, -	usking	4.4.	in to								
Total Hardness (00900) 325	Old wm	"5al	7	sch	ے مز م							ļ
Dissolved Solids 4860	yard, a Oldwar From fore		bet	in j	? ta	K						

### Texas Water Development Board Well Schedule

State Well No. 29709 Previous Well No. County	uebb 479
River Basin Lio Grande 23 Zone 2 Lat. 273155 Long.	वश्त्र वश्यः 🗸
Owner's Well No. Location 1/4,, Block	k, Survey
Owner Mercy Hospital Driller Woods D.	11119 (00
AddressTenant/Oper	
Date Drilled // 23 /996 Depth 440 Depth Datum Altitude	Source of Alt. Datum
Aquifer Laredo VDH ARDO Type Well Type	User
Well Const. Construction Method Material	
Completion 3/8" drillace P Screen	Casing or Blank Pipe (C) Well Screen or Slotted Zone (S)
Lift Data Pump Mfr Type No. Stages	Open Hole (O) Cemented from to
Bowls Diam in. Setting 3/5 ft.Column Diam in.	Diam. Setting (feet) (in.) From To
Motor Mfr. Power elec E Horsepower 15.00 2	C/0 0 200
Yield Flow GPM Pump /80 GPM Meas WEST Date /1/96 '	506 200 420
Performance Test Date 1.21-97 Length of Test 1kr Production 163 GPM	440
Static Level 71,7 ft. Pumping Level 226,0 ft. Drawdown 154 ft. Sp.Cap. 1.05 GPM/ft.	
Quality (Remarks good water Conductivity = 2080	
Water Use Primary Ive Secondary Ivr. I Tertiary	
Other Data Water Water V Logs Other Data , Available Level Quality	
Date 1/1 08 1996 Mess. 91.0027-07	
Water Date 0/ 2/ 1997 Meas. 17/ • 63 1-0/	
Date Meas. 12	
- AM-12 13167	
- AQ-12, 1-21-97	
Recorded By D. Caker Date Record Collected 1205 1996 1996	max) Reporting Agency
Remarks 1/1 = a schoed 1/4/10/16/3 621/14 1/4/15	
	Ne c
, in 1967.	
1	4
	Mell No. 85 29 2
93.0384 - migs	/

Water Quality Field Data Laredo ASR

SWN:	85-29-709
County:	Webb

Lavedo Aquifer(s):

202703

Name: Mercy Hosp.

Address: 40 Megia Engineering 6.

1202 Horston H., Sto 200

- owner's well # Laredo, 7x 75010

Sample No. <u>A Q - /2</u>
Date: <u>/ J /- 4 /</u>

				-OWING	<del>- Woll</del> -1	<u></u>	Cyry CC	<del></del>	<u>/ X _ /</u>	J.C.I.C.						
	Bottle B 500 ml	1 Bottle A 1 liter		itle 3	Bott	ie 4	Bottl	e 5	Bott	le 6	Bot	tle 7		Tota SUB- Sampl	•	
•	lml HNOs (Nitric)	V V		V		- marajan All								Not Filte	red	:
				Time			106.			_			Start	ing pH		
Water Level	71.63 LSD	Remark			out	11:0	,4	Sampl	e time	9!	3 C	<del></del>	·	_ ml. of	0.02N	l to
Temperature (0	0010)	27.2	_ C	Weat	her	<u> </u>	est.	W	ell use	In	Ľ	<b>_</b>	<del></del> _	ml. o	f Sampl	le
Specific Conduc	tance (00094)		umhos/cm	Outside	Temp	60	09=	,	Dur	7 ( ·	<u> </u>	41	End	ing pH		
pH (00400)	2.72		_	Samplin	g point	EAU	Cof D	isch.	E 1	in C						
Eh (00090)	mv.						9.16				ml.	рН	ml.	рН	mi.	рН
venol ALK (82)	244)		mg/l	pH:	8,40	€,76	b,72		le.							
Total ALK (3908	<b>86</b> )		mg/l	Temp:	27.1	17.1	27.2	su.M	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
Carbonate (0045	52) meq.	Λ	mg/l	Eh:	T											
Bicarbonate (004	453) meq	1	mg/l	Cond.	2074	يُون الله	20%·									
Total Cations(+)			<b>-</b>	440			ther no									
Total Anions (-)	Det.			71	- 0,	d	/ (- )		$\Delta I$	••						
Total Hardness	(00900) //			[369]	ot 6	, = ,	، د د،ر	16/	, ,				T			
Dissolved Solids	4.11	0		56.4	4.60	1=	1.530	Line	X - 3							
,	0. 4.W	_		169	4 30						2.3		7175	27		
	_			I	•	Δ(	MARKE	-111	VIAL (6-	13	F4' "	4 -	1,13	162.11	Die	1=

merch Hosp.

Under

Louisive dion

Louisive dion

Haysa)

85-29-709



Texas coordinate system, south zone 1000-meter Universal Transverse Mercator grid ticks.

zone 14, shown in blue. 1927 North American Datum To place on the predicted North American Datum 1983 move the projection lines 27 meters south and 32 meters east as shown by dashed corner ticks



UTM GRID AND 1980 MAGNETIC NORTH DECLINATION AT CENTER OF SHEET



County	. W	hercy Average			_		Observo	ation well	no		
Locatio	n://	hercy	Hosp	ital		•	Pumped	l well no.	85-	29-709	
TD -	440	ِحر Average	S <u>_'3′</u> • Q	<u></u>	gpm	r=	Precisi	,2 <u>,</u>	wmete	mp +1.70'	
Time	Elaport	for		Yida							
							<del> </del>	<del> </del>	<del> </del>		
8:48A		73,4				<u> </u>	<del> </del>	<b></b>		static w/EL	<i>y</i> ≈ €
8:49										Static w/EL	
8:52	3	1. 10ء	128.3								
8:55	6	211.1	/37, 7	184							
8:57	00	213,8	140.4	177							
9:00	11	216.7	143.3				<u> </u>				
9:0/	12			177							
9:21	32	224,1	150,7								
9.136	47	226.55	153.15	17/						Supled @ 9,30 ph:3.72, sc=2080, T=3	27,2
9:43	54	2,7.35	153.95	166							
7,49	60	227,72	154.32	163						Pup off	
9:51	62	145	71.6								
9.52	63	127.6	54.2								
? 53	4	115	41.6								
7.54	65	1084	35								
7:55	66	104.55	31.15								
737	63	99.9	26.5								
758	69	98.15	24.75								
7 59	70	96.35	23,45						,		
ون ر	7/	95.52	22.12								
10'01	72	94,30	1								
3 دار <i>ن</i>	74	92.55	19,15								
U;05	76	91.33	17,93								
10:07	1	90.1	16,7								
										85-29-709	

(2)

County: Webb

		Averag	• 0		gpm	r =	ft. r	2		
Time	Elapsa Time	from p	DD	Yiel	Q					
10:09A		3925								
10:15	.86	9683	/3.43					_		
مد: 10	91	85.55	12,15							
10:26	97	84.30	10.9							
10:30	101	83.60	10.2							
10:40	111	E 2.30	8,9			<i>y</i>				
10:50	121	81.33	7,93							
15:50	421	75.53	2,15							
				1	HR	Spec	-, Cc/s	, = 16	3/154	= 1,05 gpn/f+
										<i>y</i> ,
Samp	ling	TD=	440							
	,	w L =	71	_						
			369		ن ک		al/f+		_	
			369	X /,	53 =	564,	o gali	= / w	-11 v	lune
			564,	6 ×	3 =	1694	gal	= 3 m	11 ro	lume s
				, ,		opm =	6	min,		
						5pm =		min,		
			5a	uple	$d \in$	9.3	o off	- pu	-21115	41min
			0	=/	750	PM=	7/7	5 Gal,	or	12,7 nell volumes
			<b></b>							
·					ļ					
					Wi	thessed	2 by	Rud	rique	2/
<del></del>					-			No	00/5	
	<u> </u>				<u> </u>			Cos	Ker	-
		<u> </u>	<u></u>				<u> </u>			85-29-109

### Mercy Hospital Well Webb, 85-29-709

Time		DD	Yield		
	3	128.3			
	6	137.7		184	
	8	140.4		177	
	11	143.3			
	32	150.7			
	47	153.15		171	
	54	153.95		166	
•	60	154.32		163	Pump off
	62	71.6			•
	63	54.2			
	64	41.6			
	65	35			
	66	31.15			-
	68	26.5			
	69	24.75			
	70	23.45			
	71	22.12			
	72	20.9			
	74	19.15			
	76	17.93			
	78	16.7			
	80	15.85			
	86	13.43			
	91	12.15			
	97	10.9			
	101	10.2			
	111	8.9			
	121	7.93			
	421	2.15			



### Texas Water Development Board Well Schedule

State Well No. 8529904 Previous Well No. County	Webb 479
River Basin Rio Grande 23 Zone 2 Lat. 273147 Long.	9992628 # 7
Owner's Well No. Location 1/4, 1.4, Section , Block	, Survey
Owner C/O David Polston Driller Waggeds Dr 717-5811, Fx 5818 Address 1503 Sarazen Court Lardo Tenant/Oper Rick	illing Co.
Source of	
Date Drilled 6/28/98/ Depth 55 Depth Datum D Altitude	Source of Alt. Datum
Aquifer	User
Well Const.  Construction Method Air R. tary A Mazerial Steel PVC P	
Completion Screen  Life Data Pump Mfr. Franklish Type School S No. Stages  Bowls Diam. in. Setting 500 (Rick)  in. Setting 500 (Rick)  in. Setting 500 (Rick)  in. Setting 500 (Rick)	Casing or Blank Pipe (C) Well Screen or Slotted Zone (S) Open Hole (O) Cemented from /2C to 3 5 C Diam. Setting (feet) (in.) From To
Motor Mfr. Franklin Fuel or elec. E Horsepower 40.00 2	06 0 396
_ I	506 376 585
Performance Test Date 2/9.7 Length of Test 12/4 Production 300 GPM	
Static Level 2 ft. Pumping Level — ft. Drawdown 480 ft. Sp.Cap. — GPM/ft.	+
Quality (Remarks I have temporarily : coul = 4020	
Water Use Primary Secondary Tertiary a	
Other Data Water Water V Logs Other Data Other Data	
Date 0/23 /996 Mess. 27.79 /-0/	
Water Date 12 4996 Mess. 32 • 8 2-6 1	
Date C2CS 1987 Mess. 12 • 7-6-7  13  14  15	
10 13 NO -13	
ask As	
Date Record Collected Collected 16	
	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
Remarks Measured yield 230 GPM in 1997.	m.P. +1.0'
105) Teet & decidous after purpling 12	m.P. +1.0' Top of 1819
	Aquifer
	Well No. 85.29.804
93-0384	

Lasa Blanca

Lasa Blanca

Dam

Dam

Casa Blanca

Concentration to the storage

Aux 59

(Saunders)

85-29-804



County	:_ We	66		2/		Observation we	11 no85-29-8	2
Locatio	on:	ake	Casa	Blance				
		Averag	• 0	gpm	r *	ft. r ² =	mp +1.	00'
Time	Elepsa Time	e who	Yield				Remo	
9:10		28.65						. —
9:14			+250				Pump	On
							Flow me	On ter passed
		WTM					E-Live past	will m + 9 70'
9.26			235					
7:43			230					
7.55							Coul: 4 Texp: 2	8.6°C
0:00			230					
10:05							Coul = Tesp =	4030 28.9
10:11			230				7ap:	4026 28.9
10:15		·					C = 7 =	4020 28.9
10:20							Sam	4020 28.9 ole (AC
0:22			228					
دين ن							Pup	off
10.32		75.85						
10:35		70.54					·	
10.'38		66.16						
10:40		63.37						
10:43		60.28						
10:47		57.20					·	
10,50		<i>5</i> 5.60						
10:55		E2 554						

11.00

11:05

11:10

50.45

48.66

47.20

85-29-804

Water	Qual	ity	Fie	ld	Data
Lare					

SWN:	85-29-804
County:	Webli
Aquifor(s):	Laredo?
	Curcia ?

Name: Ca David Pulston
Address: 1503 Screen Court
Lareda Tx 78045

Sample No. A G - 13

Date: 1-,23-47

By: D. Caker

owner's well #

Bottle1 B 500 ml	Bottle A 1 liter	(	tie 3	Bott	ie 4	Bott	le 5	Botti	le 6	Bot	tie 7		Tota SUB Samp	•	3 ~
lml HNOs (Nitric)					w . Alekhani		1						Not Filte	ered	2
<del></del>	Remark 고と, 기	9.10	Time Time Weath	out	//:/	5	Sampl	e time	10:5	Σι''	<u>an</u>		_ ml. o		
Specific Conductance (00094) pH (00400) *	نند خداد الماري ويوالي زيد ا	-		Temp			Pen	ap o	9:	14		Enc	<b> IIII. (</b> Jing pH	•	
Eh (00090) mv.		mg/l	Time:	9:55						ml.	рН	ml.	рН	ml.	рН
Total ALK (39086)  Carbonate (00452) meq/l		mg/l mg/l		284	289	2%.(1 230		- , <u>,,,,,</u> ,,							-
Bicarbonate (00453) meq/l		mg/l	Cond.	4460		4020	40,20	er war							
Total Cations(+)  Total Anions (-)  Total Hardness (00900)	J		27.65	*	ph me	ther no	tes: دلا سا ^ل	إبلت	sate i		<del> </del>				
Total Hardness (00900)  Blasolved Solids  8  //25	-		28.79										ļ		ļ

**2** 210 7236512

WA & TRMT PLANT

02/20/97 11:24

P02

2

02

09

96

City of Laredo Water Utilities Department Water Treatment Plant

Physical-Chemical and Bacteriological Test Results

Date collected: 9-27-	g b	Date tested:	9-27-96
Sample origin: 5300 b	lwy 59 - Pa	ston Well K	ater
Analysis requested by:	Gerardo Pir	700	
	Poston Will	JEFF #1 RESULTS	MCL
Phenolphthalein Alkalinit Total Alkalinity pH Hardness Calcium Magnesium Sulfate Chloride Turbidity Conductivity Temperature  Total Coliform Fecal Coliform Heterotrophic	y 29 710 8.7 8 291 208 0.11	26.76	NL mg/L NL mg/L NL mg/L NL mg/L NL mg/L mg/L mg/L mg/L NTU'S UHOM'S  /100m1 (Y/N) /100m1 (Y/N)
Chlorine Accidual une		ce of Total	al Chlorise.
Lab. Technician		Jains Col Super	W. Jor

REV 01/9!

webb 85-29-804

P01

City of Laredo | Water Utilities Dept.
Division of microbiological and Chemical Analytical Laboratories | Water Treatment Plant 2519 Jefferson St.
Chain of custody form

Post-It® Fax Note	7671	Day-20-97 1000 2
Brent Kri	3/-17	Town Robber
Phone #		Co.
191 (O'B' ""	196	(20)795-2632

Analysis requested by: Citardo Pinzon
Date and time requested: Date: M-21-Mb.   Ime:11.00A.M./P.M.
Physical address: 4002 Bortlett
City of Layeda County of webb State of Texas
Telephone: 795-2600
Signature:
Collector or custodian of sample collected: Felipe Elizanda  Physical address: 619 Reunolds  City of laredo County of webb State of Texas
Physical address: 619 Reunolds
City of laredo County of webb State of Texas
Telephone: 795; 3630;
Signatura: A elega Millerde h
Physical address of point of collection 5300 Hwy 59 Water
City of larecta County of webb State of Telas
Date and time of collection: Date: 9-31-96 Time: 10:30 ) (.M./P.M.
Sample identification or log number 148
Type of system: Public system: Water Source:
PublicDistributionRiver
Individual Raw Lake School Check Well
School Check
Dairy Construction Well Depth
Bottled WaterSpecial C12 Res
441110
Source of transfer to laboratory 11nit 13135
Person delivering sample to laboratory
Date and time of delivery: Date: 9-41-96 Time: 11:00 A.M. /P.M.
Person receiving sample at laboratory Acardi Gomez
Condition of the sample on receipt: Of satisfactory condition.
Unsuitable for analysis:
Form Incomplete. (see encircled item.)
Sample too old. Sample not received within 30 hrs of collection.
Excessive chlorine present in sample.
Braken in shipment-
Date discrapancy.
Quantity too great to permit agitation.
Quantity insufficient for analysis. (100 ml. minimum)
Bottle not provided by this laboratory.
Only one sample per time and point of collection required.
Heavy non-colliform bacteria/silt present, possible obscuring and
compromising test. Please resubmit.
A a b a a c
REV 01/95

webb 85-29-804

### Texas Water Development Board Well Schedule

State Well No. 85 37 204 Previous Well No. 85 37301 County Webb 479
River Basin Rio Grande 23 Zone 2 Lat. 272824 Long. 0992510 50000 7
Owner's Well No. Tordillo Ranchelocation
Owner Rafael Garcia Driller Rene Garierrez
Address 2601 E. Plum Laredo, 78043 Tenant/Oper. 210) 722-2505
Date Drilled Depth Depth Datum M Altitude 535 Alt. Datum
Aquifer Laredo Fm. 124200 Well W User Type
Well Const. Construction Method Rofary H Material Iron I
Completion Screen Material Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Solution Super Sol
Bowls Diam. in. Setting feet)  In. Setting feet)  In. Setting (feet)  In. Setting (feet)
Motor Mfr Fuel or
Yield Flow GPM Pump GPM Meas.,Rept.,Est Date '
Performance Test Date — Length of Test — Production — GPM
Static Level — ft. Pumping Level — ft. Drawdown — ft. Sp.Cap. — GPM/ft.
Quality (Remarks 49-14 Sample
Water Use Primary 5 tock S Secondary Terriary 1
Other Data Water Water Quality Logs Data Other Data
Date 0726 1961 Mess. 125.5
Water Date 0/30 /997 Mess. //7 • 579
Date 13 Meas 13
City of Laredo ASR pwject  6-D. Coker V  Recorded By Brent Christian Date Record Collected of Updated OV 30 1997 (20 max) Reporting Agency
6-D. Coker V
Recorded By Brent Christian Date Record Collected OV 30 1997 (20 max) Reporting Agency
Remarks Previous/x numbered 35-37-30/,
1 J J J J J J J J J J J J J J J J J J J
' <del></del>
4 Aquifer
Well No. 85.37 204
93-0384 29:93



85-37-5<del>55</del> SWN Name: Mr. Rafael Garas County: Aquifor(e): Address: 2601 E. Flum Larolp. 78,043 owner's well # Tard, 110 Ranch well Bottle1 Bottle 2 **Bottle 3** Bottle 4 Bottle 5 Bottle 6 Bottle 7 B A 1 liter 1 liter 500 ml lal HNOS Nitric) Time in 14:47 Dump on 16:05 Sample time 15:55 117,57 LSD Remark Water Level Time out well use cott/a 15,60 Temperature (00010) Weather Specific Conductance (00094) 705 2,73 umhoe/om Outside Temp 70 Sampling point Spired by Dwarp, close retank pH (00400) 7.7 149x 15:01 45,10 13:20 15:31 15:45 mt. Time: Eh (00090) mv. 803 794 801 748 775 7.80 Time Phenoi ALK (82244) ma/l 16.7 15.6 142 15.8 147 13.3 1-5:155 Total ALK (39086) mg/l Ex D.O. 1.88 MR Carbonate (00452) mg/l meal mg/l ms Cond. 2.67 2.66 2.7 Bicarbonate (00453) 1.13 meq/l Total Cations(+) Tony Total Cations(+)

Total Anions (-)

Total Hardness (00900)

Dissolved Solids

166

1825 other notes: 15.E -2,23

**Water Quality Field Data** 

Laredo ASR.

Sample No. <u>A Q - 14</u>
Date: <u>01 - 30 97</u> By: Brent Christian City of Laracho

Total

SUB-

Samples

Not Filtered

Starting pH 303

Ending pH

ml. of 0.02N to

mi. of Sample

#### TEXAS WATER DEVELOPMENT BOARD WELL SCHEDULE

State Well Number - 85 37 404	Previous Well Number	r -		County - We			
River Basin - Rio Grande - 23	Zone - 2	Latitude - 2	27 25 15	Longitude -	99 28 30	Source of	Coords - 1
hiners Well Ro	Location	1/4.	1/4, Section	, Blo	ck	, Survey	
Owner - John Hinne		Oriller - Ro	ene Gutierrez				
ddress			Tenant/Oper	•			
ate Drilled - / /		Source of Depti	h - M A1				lt H
quifer - 124LRDO LAREDO FORN	41 TOM	Coolea		WC	н туре	- W User -	
ELL Const.		Casing					
CONSTRUCTION Method - HYDRAI	ALIC RUIARY	,	– MROUGHT IRON	•		Casing or Bla	•
	·	Screen		_			or Slotted Zone
Completion - Pi	ERFORATED OR SLOTTED	Material	- WROUGHT IRON	ı		Open Hole (0)	
							to
.IFT DATA - Pump Mfr		pe – SUBMERSIB	LE PUMP	No. Stages _		Diam.	Setting(feet)
						(in.)	From To
Rowls Diam	in. Setting	ft. Co	luman Diam				
						C 7	
lotor Hfr	Fuel or Power -	ELECTRIC MOTO	R Hor	rsepower -	2	S 7	
					3		
rield flowGPN Pi	ump GPM No	eas.,Rept.,Est	-	Date-	4	]	
					5		
PERFORMANCE TEST Date-	Length of Test	t	_ Production-	- 6	PN 6		
					7	İ	
Static Levelft. Pumpi	ng Level- ft. f	Drawdown-	ft. Sp.Cap.	GPN/f	t 8	İ	
		<del></del>	· ·		9	ĺ	
QUALITY (Remarks-					10		
		<del> </del>			. 11	•	
WATER USE Primary- DOMESTIC	Secondary- ST	ncx	Tertiary_			•	
WILK USE THEMELY DOOR STILL	Scooning 511				13	•	
OTHER DATA AVAILAIBLE Water	lounde M. Ouslity	Y Logs-	Other Dai	ha_	14	•	
MIRK BAIN NAVIENIBLE MATCH	Feacite in America.	- 1 Logs-	VUICI DE	La-		•	
HATER LENGTE Done 12/05	/1006 Management	100.70			15	•	
NATER LEVELS Date- 12/05	/1990 Measurement-	-100.70	. مادم ساب ه	. 11	16	•	
Uate- 12/05	/1996 Measurement-	-143./0	Funpin	J LEVEL	17	:	
					18	•	
Recorded By S. Moore	Date	Record Collec	ted or Updated	1- 0//2//1961		•	
Reporting Agency – TEXAS WATER	DEVELOPMENT BOARD						
remarks -			,	A = C	·		

Hole in steel place

M.P. + 0.50

pictures 4,5,6





				Wate	r Qua	lity F	ield (	Data	•							
SWN: County: Aquifer(s):	85 37 409 Welb 4	-		owner	Name Address		200	<b>c</b> .		0	<del>4</del> /	Samı	Date	: /2-	9 - 6 5 - 9 Moor	16
	Bottle 1 500 ml Anjons	Bottle  1 liter Calons	2 Bot	tie 3	Bott	lo 4	Bott	la E	Rott	lo 6	Pot	itie 7	C	Tota SUB Samp	ol  -  ies	
		2 ml HNO (Nitric)	0.6 H	ml O	2) Vir	ni VO Nitric)		-		/mit	ric		u	All filte	ther-	
Water Level Temperature (0001	100.70 LSD	Remark 27. Y		Time Time	out •			Samp	le time	<u>//:</u>	40	_		_	of 0.021	
Specific Conductan		3180		Outside		•						· ·	En	_	<u></u>	
Eh (00090) anol ALK (82244	mv.	8	mg/l	Time: pH:	1		10:45 7.25					рH	ml.	рН	ml.	рН
Total ALK (39086) Carbonate (00452)		<i>328</i> 9.6	_mg/l	Temp: En:	27.3	27.2	27.2	27.4	27.4	27. ¥						
Bicarbonate (00453 Total Cations(+)	) meq/l			Cond.	3./8		3./8 ther no		3.18	3.18						

**Total Anions (-)** Total Hardness (00900) **Dissolved Solids** 

125.50 10:15 11.15 143.70 11:30

MATERIAL LOVAL

## O!' TEXAS NATER DEVELOPMENT BOARD

1 Number - 85 37 406				nty - Webb				
n - Rio Grande - 23	Zone - 2	Latitude - 27	7 25 58 Longi	tude - 99	28 47	Source o	f Coords -	1
1 No	Location	1/4,1	1/4, Section	, Block		, Surve	у	_
wner - Ramond Whitesi	de	Oriller - Dav	vid De La Cruz					
			Tenant/Oper. Z	а рата	40	ase Se	rvice	
ed - 04/01/1975	Depth - 330 ft. 5	ource of Depth	- D Altitud	e - 425	ft.	Source of	Alt H	_
124LRDO LAREDO FORM	TION			Well	Type	- W User	-	
Const.		Casing						
ION Method - CABLE-	TOOL	Material -	STEEL		1	Casing or B	lank Pipe (0	C)
		Screen			1	Well Screen	or Slotted	Zone (
Completion - Pi	RFORATED OR SLOTTED	Material ~	STEEL		ļ	Open Hole (	0)	
					j	Cemented fr	omto	
- Pump Mfr	Typ	e - Submersibli	E PUMP No. S	tages			Setting	
					(	(in.)	From	
l	n. Setting -	ft. Cole	uman Diama	i	in.			
					1	<b>C</b> 7	0	118
	Fuel or Power -	ELECTRIC MOTOR	Horsepow	er -	2	S 7	118	130
	<del></del>				-	C 7	130	180
OW GPM PI	mp- GPM No	as.,Rept.,Est-	Date-		4	S 7	180	205
<del></del>	· <del></del>				5	C 7	205	305
CE TEST Date-	Length of Test	-	Production-	GPM			305	329
				<del></del>	7			
velft. Pumpi	na Level- ft. f	ravdovn-	ft. Sp.Cap	GPM/ft				
					9			
Remarks-					10			
			<del></del>		11			
Primary- DOMESTIC	Secondary.		Tertiary-		12			
Trially baresile	5,50,132. y				13			
A AVAILAIBLE Water	lought. C Guality.	Y Logs_D	Other Data_		14			
V MAUTENTOFF Marel	reserva- e yearing.	. cogs- 0	Anici Dred.		15			
ELS Date- 04/01,	/1075 Mosermant-	_70 กก			16			
CLS Date- 04/01,	/1996 Measurement-	115.40	punaina le	vel	17			
Date- 12/03	1330 MOGSUI CARRILL-	-110.70						
. S Managa	B-4-	Bassed Collect	ad am Hadakad 197	02/1006	18			
y S. Moore	Vate	kecora confect	en or updated- 12/	03/13/20	19			

Agency - TEXAS WATER DEVELOPMENT BOARD

ition well. Measured yield 25 h 176 feet drawdown in 1975. d from 0 to 110 feet.

> M.P. + 1.00 Hole in steel plate

> > Aquifer - 124LR00 Well No. - 85 37 406



### **Water Quality Field Data**

SWN:

85-37-406

County:

webb 479

Aquifer(s):

Laredo

Name: Zapata Lease Service, Inc

Address: 1.0. Bax 1067

Zapata, Taxes

7807.

Sample No. A Q 0 4

Date: 12-3-96

By: 5. Moore

Bottle1 Bottle 2 Bottle 3 Bottle 4 Bottle 5 Bottle 6 Bottle 7 Total 48 SUB-250 ml 1 Liver 1 Liger 500/ml 1 liter Samples Aplohs Radioactivity Cations Nitrate 2 ml 0.5 ml 2 ml IMI All filtered Nitria unless other-HNO H SO **HNO** (Nitric) (Sulfuric) (Nitric) wise stipulated Time in NOON Starting pH 4:30 PM Sample time 3:50 PM 81.80 LSD Water Level Remark Time out ml. of 0.02N to 27.3 c Weather Cloudy - Cool well use Temperature (00010) ml. of Sample 4540 umhos/cm Outside Temp Ending pH Specific Conductance (00094) Head 7.18 Sampling point TOP OF Well pH (00400) 275 3:15 3:45 ml. 2:10 2:70 2:30 Eh (00090) mv. Time: На mł. ρH ml. Ha pH: 7.07 7.07 7.22 7.22 7.21 7.18 mol ALK (82244) ma/l mg/l 27.3 27.3 27.3 27.3 27.3 27.3 Total ALK (39086) Temp: mea/1 Carbonate (00452) ma/l meq/1 429,6 mg/l Cond. 4.52 4.52 4.53 4.53 4.54 4.54 Bicarbonate (00453) Total Cations(+) other notes: Pump on 1;50 Total Anions (-) WL 2:10 11050 Total Hardness (00900) 2'20 113.70 2:30 114.60 **Dissolved Solids** 



PROJECT NAME / LOCATION PROJECT # City of Laredo ASR Feasibility Study McPherson

118069.J0.ZZ

BORING # TW-1

**DRILLING CONTRACTOR** 

Texas Water Development Board

### **WELL CONSTRUCTION** DIAGRAM

SUPERVISED BY B. Christian City of Laredo

**DEPTH TO WATER** 135.14 ft

DATE 2/5/97



Send original copy by cartified return accept requested mail to: TNRCC, MC 177, P.O. Box 13087, Austin, TX 78711-2087

ATTENTION OWNER: Confident Privilege Notice on an reverse side of Well Owner's copy (pink)

# State of Texas WELL REPORT

Texas Water Well Drillers Advisory Council
MC 177
P.O. Box 13087
Auatin, TX 78711-3057

				512-239-0530	
1) OWNER <u>City of Laredo</u> (Name		8 P.O. Box 2950 (Street of RF		Texas 78044 (Smle)	(Žip)
2) ADDRESS OF WELL: County Webb	McPherson (Street, RFD of other)			GRID # <u>85-29-</u>	
3) TYPE OF WORK (Check): 题 New Well Despending		Ionitor   Environment	tal Soil Boring Dome	1 '	5.321
5) WELL LOG:	DIAMETER OF HOLE Dia. (in.) From (ft.) To (ft.)	7) DRILLING METHOD	, ω	Kors 099 ;	1 <b>8</b> 588
Started 1-7 1997	4-3/4 Surface 40	Air Rotary 🏖 i	• —		
	0-5/8 40 525 7-7/8 525 886	Other			ที
	on and color of formation material	8) Borehole Completic	on (Check): Open i		
	Caliche shale	_	e Interval from 430		£ tt.
50 308 Blue &	gray shale	CASING, BLANK PIPE,	AND WELL SCREEN DAT	'A:	
	andstone A		astic, etc.	Setting (ft.)	Gage
	andstone		otted, etc. Miğ., il commercial	From To	Casting Screen
	ray shale	5-5/8 n Steel	<del>-</del>	0 330	
		5-5/8 n Stainle 5-5/8 n Steel (	ess Steal scrn Casing	330 390 390 440	_030
		5-5/8 n Steamle	ess steel scrn	440 490	.030
		9) CEMENTING DATA	1 [Rule 338.44(1)]	490 <b>49</b> 5	20
		Cemented from	395 11. 10 430 11 495 525	t. No. of sacks used	<u> </u>
		Methodused Tre		t. No. of sacks used	
(Use reverse side of Well Own	19/S CODY. If necessary!	Cemented by T.W	.D.B. & Hallib		
13) TYPE PUMP:			ystem field lines or other co in of above distance <u>ES</u>	_	<u>200</u> ft.
diensamdus ggk hel.   enichu'l	ble Cylinder				
Other	358 h.	10) SURFACE COMPLE  *** Specified Surface	ETION e Slab installed (Rule 338)	.44(2\(A))	
Depth to pump bowls, cylinder, jet, etc., _		· · · · · · · · · · · · · · · · ·	e Siab installed   [Hule 338. Beeve Installed   [Rule 338.		!
14) WELLTESTS:		Pilless Adapter U	Jsed [Rule 336,44(3)(b)]	.,,,	
Type lest: TRPump Beiler Yield: 75 gpm with 140		☐ Approved Alterna	ative Procedure Used [Rule	338.71]	·
y renu:gpm with	_ n, ora—court site! O Ars.	11) WATER LEVEL:		B B 65	
15) WATER QUALITY:	High name and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	Static level 137 Ansaian flow	h. below land surface gpm.	Date <u>2-5-97</u>	
Did you knowingly penetrate any strata w constituents?		121 PACYERS		Type Depth	,
☐ Yes ☑ No Ill yes, submit "REPC		12) PACKERS:	7	Liepti	
Type of water? Was a chemical analysis made? '	Yes No	None			
,					
I hereby certify that this well was drilled by me understand that failure to complete items 1 the	e (or under my supervision) and that each ru 15 will result in the log(s) being returned	for completion and resubmi	nirtal.	my knowledge and belief.	l
	e or print)	WELL DRILLER'S LI		1 W.L	
ADDRESS 1700 Hydro Dri		(Chy)		8728-7725 (Zigne) (Zigne)	»)
(Signed) Hen	Glaskin		mus lai	N	
(Licensed	(Well Driller)		(Registered	Driller Traines)	Ir

TNRCC-0199 (Rev. 06-21-96)

White - TNRCC

Yellow - DRILLER

Pink - WELL OWNER



PROJECT NUMBER

118069.J0.ZZ

BORING NUMBER

TW-1

SHEET 1 OF 6

### **SOIL BORING LOG**

PROJECT Laredo ASR		LOCATION McPherson St	orage Tank	
ELEVATION	DRILLING CONTRACTOR	TWDB (Texas Water Developmen	t Board)	
DRILLING METHOD AND EQUIPMENT	Failing Mud Rotary 7 7/8" bit (6 1/8" start)			
WATER LEVEL AND DATE	4 = 0=	FINISH	LOGGER L. McAllister	<u> </u>

WATE	ER I	LEVEL A	ND DATE			START_1-7-97 FINISH 1-13-97	LOGGER L. McAllister	
<b>M</b> €	•		AMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS	$\Box$
DEPTH BELOW	מסווי שכב (נ	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION	
0'		10	1			CLAY (CL), yellowish orange with dark yellow orange staining 15-25% fine gravel, mostly quartz, clear, light brown and dark gray		
	$\exists$	20	2	_	_	CLAY (CL), with gravel as above, fragments of gypsum		_
25	,"-	30	3			CLAY (CL), as above, with yellowish gray mottling, some silty nodules with fragments of oyster shell chert and gypsum	Driller hit hard "ledge", bit wants to kick off to side	
		40	4	_		CLAY (CL), as above, increased fragments of shell and chipped chert, decreasing gravel content (5-10%)	32-37 ft: very rough drilling	-
-		50	5	_		CLAY (CL), dark gray with yellowish orange silty nodules, some ???? fragments (claystone/siltstone), "shaley", fragments of gypsum and some oyster shell	Stop 1-7-97 to install 40 ft surface casing Start 1-8-97	
50'	' -	60	6	_	_	CLAY SHALE, dark gray, soft, friable		
		70	7	_	_	SHALE/CLAYSTONE, dark gray, fine grained, soft, fissile		
75	<b>"</b>	80	8	_		<b>SHALE</b> , as above and <b>SANDSTONE</b> , light steel gray, very fine quartz sand, soft, $\sim$ 0.5 ft thick	76 ft: very rough quartz sandstone layer ~0.5 ft thick	
		90	9	_	_	SHALE and SANDSTONE, interbedded in layers 0.5 to ~1.0 ft thick, as above SANDSTONE at 90'	quality surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous and surrous an	
100		100	10	_		SHALE, as above from ~90.5 ft	Sandstone layer at 90 ft (0.5 ft thick) Sandstone decreasing	
100	_	110	11	_	_	SHALE/CLAYSTONE, as above, no distinct sandstone intervals		_
		120	12			SHALE/CLAYSTONE, as above		
125	5' —	130	13	_	_	SHALE/CLAYSTONE, as above		_
		140	14	_		Interbedded SHALE and SANDSTONE, as above, fragments of gypsum	Rough drilling at 135+ ft	-
	_		15	_		<b>SHALE</b> and <b>SANDSTONE</b> , as above, some mica and shelly material	Rough drilling at 140+ ft	
L_150'	·	150	l	<u> </u>	<u> </u>		<u> </u>	



PROJECT NUMBER

118069.J0.ZZ

BORING NUMBER

TW-1

SHEET 2 OF 6

### SOIL BORING LOG

PROJEC	TLare	edo ASR			LOCATION McPherson Storage Tank							
ELEVATION DRILLING CONTRACTOR TWDB (Texas Water Development Board)												
DRILLING METHOD AND EQUIPMENT Failing Mud Rotary 7 7/8" bit (6 1/8" start)												
WATER LEVEL AND DATE START 1-7-97 FINISH 1-13-97 LOGGER L. McAllister												
»(F	SAMPLE			STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS						
 	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION						
	160	16	_	_	SHALE, dark gray, soft, fissile, fine grained layer of oyster? shell at 156 ft, very hard, white and gray crushed shelly material, shiny fragments from shell interior	Hard drilling at 156 ft, ground shell fragments and mica?						
-	170	17	70.00		SHALE, as above, no oyster shell							
175'—		18			SHALE, as above	-						
_	180	19		_	SHALE, as above							
-   -	190	20		-	SHALE, as above							
200'	200	21	_	_	SHALE, as above	Stop drilling 1-8-97						
_	210	22		_	SHALE, as above							
225' —	220	23		_	SHALE, as above, with numerous thin layers of SANDSTONE, steel gray, soft, very fine grain, quartz (mostly sandstone recovered)	_						
	240	24	_	_	SHALE, as above							
250'	250	25	_	_	SHALE, as above							
	260	26			SHALE, as above							
275' —	270	27	_		SHALE, as above	_						
	280	28	_	_	SHALE, as above	_						
	290	29	_	_	SHALE, as above							
		30	_	_	SHALE, as above	_						



118069.J0.ZZ

BORING NUMBER

TW-1

SHEET 3 OF 6

PROJECT Laredo ASR		LOCATION McPherson Storage Tank					
ELEVATION	DRILLING CONT	TRACTOR_TWDB (Texas Water	er Development Board)				
DRILLING METHOD AND EQUIPMENT	Failing Mud Rotary 7 7/8" bit (6 1/8"	" start)	· · · · · · · · · · · · · · · · · · ·				
WATER LEVEL AND DATE		7-97 FINISH 1-	-13-97 LOGGEE	L. McAllister			

MCT.	INTERVAL TYPE AND ALMBER RECOVERY (FT)			STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS		
S DEPTH BELOW S SURFACE (FT)	INTERVAL	TYPE AND NUMBER		TEST RESULTS 6°-6°-6° (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION		
300' <i>-</i> -	310	31	_	_	SHALE, dark gray, fine grained (silt and clay), soft, fissile, trace of very fine sand	OVM- 0 ppm	_	
_	320	32		-	SHALE, as above		_	
325'	330	33		_	SHALE, as above	320 ft: Top of 20/40 sand pack	_	
-	340	34		_	SHALE, as above		_	
_	350	35	_	_	SHALE, as above		_	
350' <del></del> 	360	36	_		SHALE, as above, becoming sandier, less clay, trace of yellow orange fragments of agate, siltsone and cabonite type material		_	
_	370	37	_		SANDY SHALE/SANDSTONE, dark gray, very fine grained sand and silt, soft, fissile, decreased clay, yellow orange fragments as above		_	
375' —		38		_	SANDY SHALE, as above		_	
_	380	39	_	_	SHALE, with less sand		-	
_	400	40	_	_	SHALE, as above, fine grained, soft, fissile, clayey	397.5 ft: Top of grout seal and top of	_	
400' —	410	41	_	_	SHALE, as above, sandier in zones	blank casing	_	
_	420	42		_	SHALE, as above, thin sandy layers, some sandstone fragments	Slightly harder at ~418 ft	_	
- 425'	430	43	_	_	SHALE, as above		-	
		44	-	_	SHALE, as above	435 ft: Top of sand pack	-	
_	440	45	_	_	SHALE, as above, and SANDSTONE, steel blue gray, very fine grained, quartz, harder than shales	Drilling much rougher at 442-444 ft, sandstone 445 ft: Top of lower screen	-	



PROJECT NUMBER 118069.J0.ZZ

**BORING NUMBER** 

TW-1

SHEET 4 OF 6

PROJECT Laredo ASR		LOCATION McPherson St	orage Tank	
ELEVATION.	DRILLING CONTRACTOR_	WDB (Texas Water Developmen	t Board)	
DRILLING METHOD AND EQUIPM	ENT Failing Mud Rotary 7 7/8" bit (6 1/8" start)			
WATER LEVEL AND DATE	START_1-7-97	FINISH	LOGGER L. McAllister	
>	STANDARD			

460 470 48 480 49	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY  SHALE, dark gray, slightly harder, has black sand?, slightly coarser, in shale, shale is overall less fissile  SHALE, as above 469 ft: SANDSTONE, light gray with black speckles, hard, very	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION  Rougher slower drilling overall
470 480 480		_	coarser, in shale, shale is overall less fissile  SHALE, as above 469 ft: SANDSTONE, light gray with black speckles, hard, very	Rougher slower drilling overall
47 470 48 480		_	469 ft: SANDSTONE, light gray with black speckles, hard, very	_
480	_		fine sand, well sorted, quartz with caliche cement	469 ft; Hit hard sandstone, only drilled
			SHALE and SANDSTONE, as above	1 ft in 30 minutes  475 ft: Out of sandstone
490		_	SHALE, as above, fine grained and clayey, little to no sand/sandstone	
50	_	_	SHALE, as above, few thin stringers of sandstone	495 ft: Top of sump —
51		_	SHALE, as above	Stop 1-10-97 —
510			SHALE, as above	Intermittent rough drilling in sandstone
520 53	_	_	SHALE, as above	_
530 54		_	SHALE, as above	
540 55		_	SHALE, as above	<u>-</u>
,	-		SHALE, as above	_ _
Į.			SHALE, as above, more clay, slightly lighter in color even when wet, softer	Shale softer and more clayey
- 1	-	_	SHALE, as above	
			SHALE, as above	
590			SHALE, as above	
54 55 56	54 40 55 50 56 50 57 70 58 80 59	54 — 55 — 56 — 56 — 57 — 58 —	54 — —  55 — —  56 — —  57 — —  58 — —  59 — —	SHALE, as above  SHALE, as above  SHALE, as above  SHALE, as above  SHALE, as above  SHALE, as above  SHALE, as above, more clay, slightly lighter in color even when wet, softer  SHALE, as above  SHALE, as above  SHALE, as above  SHALE, as above  SHALE, as above



118069.J0.ZZ

BORING NUMBER

TW-1

SHEET 5 OF 6

PROJECT_Laredo ASR		LOCATION McPherson Storage Tank					
ELEVATION	DRILLING CONTRACTOR TWI	DB (Texas Water Developmen	t Board)				
DRILLING METHOD AND EQUIPMENT-	Failing Mud Rotary 7 7/8" bit (6 1/8" start)						
WATER LEVEL AND DATE	1.7.07	FINISH 1-13-97	LOGGER L. McAllister				

WATER	LEVEL A	ND DATE			START 1-7-97 FINISH 1-13-97	LOGGER L. McAllister
MGE.		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
-600'-	610	61			SHALE, dark gray, fine grained, fissile, mostly clayey, occasional stringers of thin, very fine grained sandstone	_
_	620	62	-		SHALE, as above, thin white shelly layer	
625'-	630	63	_		SHALE, as above, no shell	
-	640	64		_	SHALE, as above	<del>-</del>
-	650	65	<del></del>	_	SHALE, as above	
650'	660	66	_	_	SHALE, as above	
	670	67	_	_	SHALE, as above	_
675' -	680	68		_	SHALE, lighter gray, 15-20% white shelly material, oyster? possibly tan limestone, some brown shelly material also, nodules of yellowish orange silt	
_	690	69	_	_	SHALE, as above, more sand size grains, but not in layers	<del>-</del>
700' -	700	70	_		SHALE, as above	
-	710	71	_	_	<b>SHALE</b> , light gray, soft, clayey, ~5-10% fine black sand, not in layers, just sandy shale, trace of shelly material and tan and yellow orange silt nodules	Soft- drilling much faster —
-	720	72		_	SHALE, as above	_
725' -	730	73	_	_	SHALE, as above	
-	740	74		_	SHALE, as above, less sand, only trace of shelly material, soft and clayey, nodules of yellow orange silt	_
-	750	75	-		SHALE, as above	
└ <del>-</del> 750' <i>-</i> -	/ 700	L		<u> </u>		1



PR	OJ	EC	T	VL	J M	В	E	
	v			••		_	_	

#### BORING NUMBER

TW-1

SHEET 6 OF 6

PROJECT Laredo ASR		LOCATION McPherson S	torage Tank		
ELEVATION	DRILLING CONTRACTOR_	DRILLING CONTRACTOR TWDB (Texas Water Development Board)			
DRILLING METHOD AND EQUIPMENT	Failing Mud Rotary 7 7/8" bit (6 1/8" start)				
WATER LEVEL AND DATE	START_1-7-97	FINISH 1-13-97	LOGGER L. McAllister/B. Christian		

	LEVEL A	ND DATE	·		START 1-7-97 FINISH 1-13-97	LOGGER L. MCAHISTER/B. CHRISTIAN
»E	:	SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
750 <b>'</b> 	760	76	_	_	SHALE, light gray, fine grained, clayey, trace of sand and shell fragments, some orange brown silty nodules	Stop 1-12-97
_	770	77	_	_	SHALE, light gray, fine grained	-
775' –	780	78	_	_	SHALE, darker gray, some light gray silt	_
	790	79	_	_	SHALE, light gray, silty	_
_	800	80	_	_	SHALE, as above, less silt	_
800' – -	_	81	_		SHALE, dark gray, some light gray silt	_
-	810	82	_		SHALE, as above, trace silt, some orange-brown silty nodules	-
 825'	820	83	_	_	SHALE, light grained, fine grained, trace of sand	
-	830	84	_	_	SHALE, dark gray, some fine grained light gray silty sand	
-	840	85			SHALE, as above	
850' - -	850 860	86		_	SHALE, dark gray	
-	870	87	_	_	SHALE, as above	
875' - -		88	_		SHALE, as above	
-	880				Total Depth 884.5	
<del>-</del>						
	1	1				



PROJECT NAME / LOCATION PROJECT #
City of Laredo ASR Feasibility Study Del Mar Storage Tank

118069.J0.ZZ

**BORING #** TW-2

**DRILLING CONTRACTOR** 

Texas Water Development Board

DATE

3/7/97

**WELL CONSTRUCTION DIAGRAM** 

SUPERVISED BY B. Christian / City of Laredo

**DEPTH TO WATER** 117.0 ft



ATTENTION OWNER: Confidentiality Privilege Notice on on reverse side of Well Owner's copy (pink)

## State of Texas WELL REPORT

Texas Water Well Driffers Advisory Council
MC 177
P.O. Box 13067
America TX 78714-3067

	VV to to to					512-229		·
1) OWNER City of Larado		BS P		Box 2950	Laredo	TX 7		[7i4)
(Na 2) ADDRESS OF WELL:	ame)		) ،	(Street or RFD)	,		(State)	(Zip)
County WEBB		rego		Texas	78044	3RID #	85-2	9-4
	(Street, AFD or other)		City)	(State)	(Zip)			
3) TYPE OF WORK (Check):	4) PROPOSED USE(Check):	Montol	, 0	Environmental Soil B	Boring Dome	setic t	5)	
☐ New Walt ☐ Despening	☐ Industrial ☐ Irrigation ☐ Inje	ection	☐ Publ	lcSupply 🗍 De-w	ntering(S)() Testwo	» L	AT 270	34289
☐ Reconditioning ☐ Plugging	If Public Supply well, were plans sut	betilmd	to the Ti	NRCC?   Yes	□ No	Γ.	at 27°. on 099°	'no are
6) WELL LOG;	DIAMETER OF HOLE	7)	DBu t w	NG METHOD (Chec	it): Driven	K'	20 099	18.887
Date Dritting:	Dia. (in.) From (ft.) To (ft.)	1		iotary XX Mud Ro	_	-		
Started 2-10- 19 97	14-3/4 Surface 20	1	_	igmmer 🗀 Cable		}		
Completed 19	10-5/8 20 450	} `	_	Pr	_	}		_
	7-7/8 450 800							Ŋ
From (ft.) To (ft.) Descrip	ption and color of formation material			le Completion (Che	. •	_	Straight Well	
0 20 Yellow C	aliche	•	_		_	Other		
	aliche & Blue Shale	L	H Grave	il Packed give intervi	el from <u>260</u>	R.	lo <u>425</u>	<u> </u>
	le & Gypsum streaks	CAS	ING, BL	ANK PIPE, AND W	ELL SCREEN DAT	'A:		- <del></del>
	le & hard streaks	-	New	Steel, Plastic, et			ng (ft.)	Gage
196 250 Gray Sha	le & sandstone streaks	Dia.	or	Perf., Slotted, et	lc.	ļ		Casting
290 440 Gray San		(ln.)	+	Screen Mfg., if c	commercial	From	То	Screen
440 800 Blue & G	ray Shale & hard streak					0	269	-
			/B n	T		269	289	-030
		T	/B n			289	409	040
	· ·	6-5/	/B n	Shutter so	creen	409	429	.030
		1 '		ITING DATA (Rule ted from 0 429				
		1	Method	used Tremmie				
46	Name of Acres Managers			ledby T.W.D.		urton		
<u> </u>	Owner's copy, if necessary)	3		e to septic system fi				, 150 m.
12) TYPE PUMP:		}	Method	of verification of abo	we distance Eg	timated	1	
☐ Turbine ☐ Jet <u>Fix</u> Subme	rsible Cylinder		#11 <del>22</del> .	CE COUR -				
Other	350 •	1 '		ACE COMPLETION Icilied Surface Sleb II	hatelled rows	[44(3)(A)*		
Depth to pump bowls, cylinder, jet, etc		_1		icilied Surface Sleb II icilied Steel Sleeve Ir	•			
14) WELLTESTS:			•	icilied Steel Sleeve if ess Adapter Used - [	•			
14) WELL TESTS: Type (est): M Pump	r   Jetted   Estimated		_	roved Alternative Pr				
Yield: 65 gpm with 71		-			(r 191			
8P10 (77)		1113		NLEVEL:			2. 0 00	
15) WATER QUALITY:		1		evel <u>130                                    </u>			3-9-97	
Old you knowingly penetrate any strai	ta which contained undestrable		Artesia.	n flow	gpm.	Dete		
constituents?		120	PACKE	ins:		Туре	Dept	
3 3 7 7	EPORT OF UNDESIRABLE WATER		OD S					
	Depth of strate	146	- a N + I					
Was a chemical analysis made?	☐ Yes ☐ No	-						
hopopul comilies that also well as a state of	y me (or under my supervision) and that each	سسل ۳- محون		Internation	) IDIA to the back of	mu kessaalaa	toe and halfar	.1
understand that failure to complete frame?	1 thru 15 will result in the log(s) being returne				_ ,, 54 for N in D821 Of	y =================================	교육 대명(명)	•
COMPANY NAME TO STORE	Development Board		WELL C	DUILLEN'S FICENC	ENO. 23.	27	WI	
	ype or print)					<b></b>		
ADDRESS 1700 Hydro Dr	cive (AFD)	Austi	in (Cliy)		Texas 78	728-77 (Sate)		<u>"""</u>
Illen de	1 111-1			, P.		رسس. ۲ معرونین	· "	• •
(Signed) (Licens	sed Well Driller)	—	(Signed	n Xow		Driller Train	100)	
,	Please ansch electric log, chemical ensity:	sis, and	i other p	ertinent informatic				



PROJECT	NUMBER
FILOUEOI	110100-

#### BORING NUMBER

TW-2

SHEET 1 OF 6

PROJECT Laredo ASR		LOCATION Del Mar Stora	ige Tank	
ELEVATION	_ DRILLING CONTRACTOR	TWDB (Texas Water Developme	nt Board)	
DRILLING METHOD AND EQUIPMENT Failing Mud Rot	ıry			
WATER LEVEL AND DATE	START 2-9-97	FINISH 2-20-97	LOGGER L. McAllister	

ATER	LEVEL A	ND DATE			START 2-9-97 FINISH 2-20-97	LOGGER L. McAllister		
ø.F	5	SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS		
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	FEST RESULTS 6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION		
- 0' <del></del>	10	1	-	_	SILT/SILTSTONE (ML), yellowish orange, trace of fine sand, highly gypsuforous (selnite)	OVM- 0 ppm		
		2	_		SILT (ML), as above			
25'	20	3	_		SILT (ML), as above			
_	30	4	_	_	SILT (ML), as above with CLAY (CL)			
_	50	5	_	_	<b>CLAY (CL)</b> , yellowish orange and greenish gray, less gypsum, trace of silt to very fine sand			
50 <b>'</b> —		6	_		CLAY (CL), light olive gray, trace silt			
_	60	7			CLAYSTONE / SILTSTONE, light olive gray, friable			
- '75	70	8		_	SHALE, light olive gray, fine grained, fissile, silty with trace of shell material			
_	80	9	_		SHALE, as above, 10-15% oyster shell, trace of very fine sand and gypsum			
_	90	10	_		SHALE / SANDSTONE, fine grained sand, blue-gray color, fissile, 10-15% oyster shell			
_ 00' —	100	11	_	_	<b>SHALE / SANDSTONE</b> , light olive gray, fine grained, fissile, less shell			
_	110	12	_		SHALE, as above, decreasing fine sand			
 25'	120	13		_	SHALE, as above			
_	130	14	_		SHALE, as above, increasing clay			
	140	15	_	_	SHALE, as above, some very fine sand/sandstone			



	PROJE	CT	NUN	ABER
--	-------	----	-----	------

#### BORING NUMBER

___ TW-2

SHEET 2 OF 6

PROJEC	T Lared	o ASR			LOCATION Del Mar Storage Tank					
ELEVATI					DRILLING CONTRACTOR TWDB (Texas Water Development Board)					
		OD AND	EQUIPI	MENT Failing Mu	id Rotary					
WATER LEVEL AND DATE					START 2-9-97 FINISH 2-20-97	LOGGER L. McAllister				
<b>%</b> C		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS				
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS 6'-6'-6' (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION				
-150' 		16	_		SHALE, as above	-				
	160	17	_	_	SHALE, as above	<u>-</u> -				
 175' —	170	18		_	SHALE, as above, increasing clay	-				
-	180	19	_	_	CLAYEY SHALE, light olive gray, less fissile, more fine grained and soft	- -				
-	190	20	-	_	CLAYEY SHALE, as above, trace of sand, very fine	-				
200' —	200	21	_	_	SHALE, light olive gray, fine grained, fissile, trace sand	-				
	210	22		_	SHALE, as above					
 225'	220	23	-	_	SHALE, as above, little to no sand					
~	230	24	_	_	SHALE, as above					
	250	25	-		SHALE, as above, gyp???					
250° ~ ~	260	26		_	SHALE, as above, with increasing clay, light gray color					
~	270	27	_	_	SHALE/CLAY, light gray, soft, more fine grained, less fissile, some very fine sand					
275' -	280	28	_	_	SHALE/CLAY, as above					
-	290	29	_	_	SHALE/CLAY, as above					
-		30	-	_	SHALE/CLAY, as above					
300'	300			1		<u> </u>				



425' -

43

44

45

430

440

450

PROJECT NUMBER

118069.K0.ZZ

BORING NUMBER

TW-2

SHEET 3 OF 6

#### SOIL BORING LOG

					<u> </u>	
PROJEC	T_Lared	o_ASR			LOCATION Del Mar Storaç	ge Tank
ELEVAT	10N				DRILLING CONTRACTOR TWDB (Texas Water Developmen	t Board)
DRILLIN	IG METHO	DO AND	EQUIP	MENT Failing Mu		
	LEVEL A				START_2-9-97 FINISH _2-20-97	LOGGER L. McAllister
Ø€	,	SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
300' 	310	31	_		SHALE/CLAY, as above	
_	320	32	_		SHALE/CLAY, as above	-
325' —	330	33	_		SHALE/CLAY, as above	-
_	340	34		_	SHALE/CLAY, as above	_
350' —	350	35	_	_	SHALE/CLAY, as above	· -
_ _ _	360	36			<b>CLAY (CL),</b> light olive gray, very fine grained, soft, plastic, less shelly texture	<u>-</u>
- -	370	37		_	CLAY (CL), as above	-
375' — 	380	38			CLAY (CL), as above	<u>-</u>
_	390	39	_		CLAY (CL), as above	
400' —	400	40		_	CLAY (CL), as above	_
_	410	41	_	_	CLAY/MUD/MUDSTONE, light gray, very fine grained, soft, little to no texture	
_	420	42	_	_	CLAY/MUD/MUDSTONE, as above	- -

CLAY/MUD/MUDSTONE, as above

CLAY/MUD/MUDSTONE, as above

CLAY/MUD/MUDSTONE, as above



	FOT	ALL LOADS	-
PHU	JECT	NUMBE	

#### BORING NUMBER

TW-2

SHEET 4 OF 6

#### SOIL BORING LOG

					<u></u>	
PROJEC	T_Lared	o ASR			LOCATION Del Mar Storag	
ELEVAT!	ON				DRILLING CONTRACTOR TWDB (Texas Water Development	Board)
DRILLIN	G METH	DO AND	EQUIP	MENT Failing Mu		
WATER	LEVEL A	ND DATE			START 2-9-97 FINISH 2-20-97	LOGGER L. McAllister
MOT (LOW		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
—450' — —	460	46	_		CLAY/SANDSTONE, with traces of harder material, less shaley texture	
	470	47	_		CLAY/SANDSTONE, as above	_
475' —	480	48	_	_	CLAY/SANDSTONE, as above	_
	490	49	_	_	CLAY/SANDSTONE, as above	 
500'	500	50	_		CLAY/SANDSTONE, as above	
_	510	51	<u> </u>		CLAY/SANDSTONE, as above	
_	520	52	_		CLAY/SANDSTONE, as above	_ _
525'	530	53	_	_	CLAYEY SHALE, gray, very fine grained, less fissile, more pulverized	
_	540	54			CLAYEY SHALE, as above	
550' ~	550	55	_		CLAYEY SHALE, as above	
-	560	56	-	_	CLAYEY SHALE, as above, trace of sandy zones	
	570	57	_	_	CLAYEY SHALE, as above	
575' ~	580	58			CLAYEY SHALE, as above	_
_		59	-	_	CLAY, as above, becoming slightly shaley, very fine, no sand	_

CLAY, as above

60



PRO.	JECT	NUN	IRFE
		1101	

#### BORING NUMBER

TW-2

SHEET 5 OF 6

PROJECT Laredo ASR		LOCATION Del Mar Ston	age Tank	<del></del> _
ELEVATION	DRILLING CONTRACTOR_	TWDB (Texas Water Developme	nt Board)	
DRILLING METHOD AND EQUIPMENT Failing Mud Rot	ary			
WATER LEVEL AND DATE	2-0.07	FINISH 2-20-97	LOGGER L. McAllister	

ATER	LEVEL A	ND DATE	<u> </u>		START_2-9-97 FINISH 2-20-97	LOGGER L. McAllister
<u>}</u> £		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
OB DEPTH BELOW □ SURFACE (FT) 	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
	610					
_						
_ 625'—	620				SHALE, light gray, fine texture, siltier than above, some oyster shell fragments	
_	630				SHALE, as above	
	640				SHALE, as above	
-   i50'	650				SHALL, as above	
					SHALE, as above	
-	660				SHALE, as above	
_	670				SHALE, as above	
75' – 	680			3		·
-	690				SHALE, as above with trace of SAND/SANDSTONE	
_	- 555				SHALE, as above	
·00'	700				SHALE, as above, slightly sandier	
_	710				SHALE, with trace of fine sand	
_	720					
<b>'25'</b>	730				SHALE, as above	
_					SHALE, more clay, little to no sand	
-	740		-		CLAYEY SHALE, fine grained, no sand	
- -50'-	750					



i PRO	JECT	NU	<b>UBEF</b>
-------	------	----	-------------

#### BORING NUMBER

TW-2

SHEET 6 OF 6

PROJEC	T_Lared	o ASR			LOCATION Del Mar S	
ELEVATI				······································	DRILLING CONTRACTOR_TWD8 (Texas Water Develop	ment Board)
DRILLING	G METHO	DO AND	EQUIPN	MENT Failing Mu	ud Rotary	
WATER	LEVEL A	ND DATE			START 2-9-97 FINISH 2-20-97	LOGGER L. McAllister
MO]		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
GS DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
_/30 _					CLAYEY SHALE, as above	
	760		1			
-	700				CLAYEY SHALE, as above	_
_						_
_	770				OLAVEY CHALE on shows the said	-
775'—					CLAYEY SHALE, as above, trace of fine sand	-
	780					
					CLAYEY SHALE, as above	
	790					
-	, 55				CLAYEY SHALE, as above	1
_					,	-
800'	800		-		END OF BORING	
-			}			_
						_
825' —						
_						-
_	1					_
_						_
700' —						
'00 –						
-	1					
_	]					_
_						-
_	Ì					_
725' —						_
						_
_	1					_
-	1					_
-	1			Ì		_



PROJECT NAME / LOCATION PROJECT # City of Laredo ASR Feasibility Study Del Mar Storage Tank

118069.J0.ZZ

BORING # TW-2A

DRILLING CONTRACTOR Texas Water Development Board

**WELL CONSTRUCTION DIAGRAM** 

SUPERVISED BY B. Christian City of Laredo

**DEPTH TO WATER** 121.94 ft

DATE 7/28/97



Send one sal copy by centified return receipt requested mail to: TNRCC, MC 177, P.O. Box 13087, Austin, TX 79711-3087;

ATTENTION OWNER: Confidentiality Privilege Notice on on reverse side

## State of Texas

Texas Water Well Drillers Advisory Council MC 177 P.O. Rox 12087

of Well Owner's copy (pink)		WELLR	EPOR	T	4	P.O. Bax Lustin, TX 70 512-239	711-3087	
1) OWNER <u>City of Lareds</u> (Nar 2) ADDRESS OF WELL:		ADDRESS		Box 2950 (Street or RFD)	Laredo (City)		78044 (Sau)	(Zip)
County Webb	DB1 Mar		redo, T	'X (State)	(Zip)	RID#		
3) TYPE OF WORK (Check):  X New Well Deepening Reconditioning Plugging	4) PROPOSED USE	(Check):   M	ation   Pub	Environmental Soil Boris	ng 🗀 Dome	i i	)	
6) WELL LOG:	DIAMETER OF	<del></del>	7) ORILLI	NG METHOD (Check):	□ Driven			
Dete Drilling: Started7-8-9719	Dia. (in.) From (ft.) 9-7/8 Surface	To (fL)		Rotary Mud Rotary	_	]		
Completed 7-28-97 19	3-770	420	<del>_</del>	fammer   Cable Too er	or			7
From (fl.) To (fl.) Descript	ion and color of formatic	on meteriei	•	ole Completion (Check)		_	Straight Well	N
0 = 40 Orange calie	-		_	lerreamed		Otherft_ti	420	n_
40 - 250 Blue gray sha 250 - 254 Graywhite lin		eaks		LANK PIPE, AND WELL				
254 - 330 Blue gray har	rd shale & san	dstone	New	Steel, Plastic, etc.		Settin	g (ft.)	Gage
330 - 345 Sandatone & 1 345 - 410 Blue gray sha			Dia. or (in.) Used	Perf., Slotted, etc. Screen Mig., if com	mercial	Fram	To	Casting Screen
410 - 420 Blue gray sha		e	4 n	PVC casing		-2	260	
		·	4 7	PVC screen		260 300	315	-020
			4 1	PVC screen		345 345	395	020
			-	PVC Blank PVC SCHOOL NTING DATA (Rule 33		390	410	-030
			Cemer	nted from 2 <u>40</u> ft.	to 260   1 to 15'   1 pipe		_	<u>6</u>
(Use reverse side of Well On  13) TYPE PUMP:  □ Turbine □ Jet □ Submen			Distant	ce to septic system field d of verification of above	lines or other co	ncenimited c	ontamination	300 n.
Other			•	ACE COMPLETION				•
Depth to pump bowls, cylinder, jet, etc.	. <u>252</u> ft.		_	scilled Surface Sleb Insu scilled Steel Sleeve Insu	<u>-</u>			
14) WELL TESTS:				ess Adapter Used [Rul	-			
Typetest: 💢 Pump 🗌 Bailer	☐ Jetted ☐ Estim	nated	☐ API	proved Alternative Proce	dure Used (Ruic	338.71]		
Yield: <u>60 gpm</u> with <u>180</u>	ft. drawdown after	lnrs.	11) WATE	R LEVEL:	•		•	
15) WATER QUALITY: Did you knowingly penetrate any strate	which contained undesire	ıble		evel 135 ft. be		Date:	7-27-	<u>97                                    </u>
constituents?	POOT OF LINDERIDARI F	WATED!	12) PACK	ERS:	7	Гура	Dept	h
Type of water?	PORT OF UNDESIRABLE Depth of strata			NONE				
Was a chemical analysis made?	Yes 🗋 No							
i hereby certify that this well was drilled by understand that fallure to complete items 1	thru 15 will result in the log	pernutet grised (e)(	lor completio	statements herein are th in and resubmittal. DRILLER'S LICENSE N	0.000		ge and bellet.	ı
	pe or print)		<del>-</del>				74~	
ADDRESS 1700 Hydro Dri	or BEDY	<u>A</u>	ustin (Chy)		Texas	(Suste)	7 <b>6728</b> (Z	p)
(Signed)	llanks		(Signe	d)	·			; -
(Licens	ed Well Driller) lesse attach electric log,	chemical enelysi			-	Driller Train	hd)	



	PRO	JECT	NUMBE	
--	-----	------	-------	--

#### BORING NUMBER

TW-2A

SHEET 1 OF 3

PROJEC		lo ASR				LOCATION Del Mar Sto		
ELEVATION	-			Failing Mud	Rotary 7 7/8" - 9 7/8" bit	THE CHAZE TEACH DEVELOPIN	icht Boardy	
		od and And dati		MENI	7.0.07	FINISH	LOGGER P. Van Noort	
<u></u>		SAMPLE	<del>-</del>	STANDARD PENETRATION	SOIL DESCRIPT	NOI	COMMENTS	
BELOW SE (FT)	- H	22.2	ERY	TEST RESULTS	SOIL NAME, USGS GROUP SY	MBOL, COLOR,	DEPTH OF CASING, DRILLING RATE	

<b>}</b> .		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
— 0 <b>'</b> —					SILT WITH SAND, 20-40% very fine sand, orange brown selenite gypsum fragments, trace caliche	Samples obtained via mud logging at 10 ft intervals
_	10	· · · · · · · · · · · · · · · · · · ·			SILT WITH SAND, same as above, trace shell fragments	7 7/8" pilot hole
_	20	1			SILT WITH SAND, same as above, trace gray clay	9-6 mud weight 30 second viscosity
25'	30		_			- -
_					SILTSTONE AND CLAYSTONE, dark gray, stiff	_
_   _	40				SILTSTONE AND CLAYSTONE, same as above, siltstone	
50°—	50				CLAYSTONE, dark gray, trace fine sandstone quartz and dark minerals (mafics or glauconite)	
_	60				CLAYSTONE, same as above, increased gypsum	_
- 75' -	70				SILTSTONE, medium gray	_
_ _ _	80		_		SILTSTONE, with very fine sandstone, gray to light gray friable sandstone	-
_	90				SANDSTONE, very fine, light gray, no HCL reaction	Hard streak at 86-89 ft
100' —	100				SILTSTONE, soft, trace qypsum, light to medium gray	-
<u></u>	110		<u> </u>		SILTSTONE, same as above	-
<del>-</del>	120				SILTSTONE, same as above	-
125' –	130					-
-					SANDSTONE, very hard, very fine, 80% quartz, 20% dark minerals, moderate reaction with HCL suggests calcite cement	Hard streak at 130-132, 137-142, 148-150 ft probably
- -	140				SILTSTONE AND CLAYSTONE, trace sand	-
150'	150					



PROJECT NUMB							
	~ .	~~	-	 <b>N40</b>	FAT	_	-

#### BORING NUMBER

-TW-2A

SHEET 2 OF 3

ROJEC	rLared	o ASR			LOCATION Del Mar Storag	
EVATI					DRILLING CONTRACTOR TWD8 (Texas Water Development	nt Board)
	METHO			MENT Falling M	ud Rotary 7 7/8" - 9 7/8" bit	LOGGER P. Van Noort
	LEVEL AI	AMPLE		STANDARD		
בָּרָבּ		<u> </u>	>	PENETRATION TEST	SOIL DESCRIPTION	COMMENTS
G DEPTH BELOW S SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
50'					SILTSTONE AND CLAYSTONE, same as above	
	160				CLAYSTONE, clay dominant, trace sandstone	
_	470				CERT OF OTHE, Only Community, Class Surfusions	
	170				SILTSTONE, trace claystone, dark gray	
175' —	180					
_					SILTSTONE, same as above, with sandstone, siltstone reacts with HCL	Hard streak at 182-184 ft
	190		<del> </del>		SILTSTONE, same as above, mostly friable sandstone to very	
_	200				hard	
200' —	200	-			CLAYSTONE, with siltstone alternating	
_	210_					
_	ļ				CLAYSTONE, same as above	
_	220		-		SILT TO SILTSTONE, gray, soft	
225'	000				, ,	
_	230				SILTSTONE	
_	240					
_	_				SILTSTONE, same as above, trace coarse siltstone, no HCL reaction	
250' –	250		<del>                                     </del>	<del>}</del>	SANDSTONE, very fine, hard, reacts with HCL, trace selenite	Hard streak at 250-254 ft
-	258.50					
-	1				See rock core logs C-1, C-2, C-3	Begin rock coring 7/11/97
-	270					
275' -	-					
-	280		<del> </del>			
-	000					
-	290		_			
_	300					



PRO.	JECT	NUMBE	1

#### BORING NUMBER

TW-2A

SHEET 3 OF

PROJECT Laredo ASR	LOCATION Del Mar Storage Tank
ELEVATION DRILLING CONTE	ACTOR_TWDB (Texas Water Development Board)
DRILLING METHOD AND EQUIPMENT Failing Mud Rotary 7 7/8" - 9 7/8" bit	
WATER LEVEL AND DATE START 7-9	

WATER	LEVEL A	ND DATE			START 7-9-97 FINISH 7-15-97	LOGGER P. Van Noort
LOW FT)		SAMPLE		STANDARD PENETRATION TEST	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
300' 					See rock core logs 2,3	_
	315					_
_					SANDSTONE AND SILTSTONE CUTTINGS (likely carryover from coring)	_
325'-	330					
_					See rock core log 4	_
	- - -					-
350' —	350				See rock core log 5	
-	355				CLAYSTONE, soft, dark gray	_
_						_
375' —					SILTSTONE, dark gray, hard	_
319 -	380				Consideration C	
-					See rock core log 6	_
-						
400' —	400				See rock core log 7	
-	-					_
-						_
425'	420				SILTSTONE, dark gray, trace sand	_
425 -	430	-			END OF BORING AT 430 FT	December to 0.7/0" and 4" DVC
_	1				LID OF BUILDING AT 400 FT	Reamed hole to 9 7/8", set 4" PVC well, 0.020-slot at 200-300, 315-345, - 390-410 ft
-	_					-
L _			<u></u>			



BORING NUMBER

118069.K0

TW-2A - Core C-1 SHEET 1 OF 1

PROJECT:	Laredo ASR				LOCATION:	TW-2A @ D	el Mar Treatm	ent Plant
ELEVATION:	NA		DRILLING CO	ONTRACTO	₹:	TWDB		
DRILLING METH	IOD AND EQU	JIPMENT USED	:	Failing Mud I	Rotary - 6" core barre	l x 20', 7 7/8"	pilot hole	
SAMPLE RUN	C-1	START:	7/10/97	END:	7/10/97	LOGGER:	Peter van No	ort
DEPTH INTERV	AL	258.5-275.5'	LENGTH RE	COVERY:	15.33'	PERCENT	RECOVERY:	90.2%
DEPTH	COLOR		LITHOLOGY and				COMMENTS	
		CHARACTERISTIC	S (BEDDING) ; FAUL THICKNESS, SU	TS, ORIENTATION PRACE STAINING		CORING RATE	PTH OF CASING, I E AND SMOOTHNI OPS, TEST RESUL	ESS, CAVING .TS, ETC
258.5 - 268.9	Light to medium gray		rk green specs. ( . Light color lami		core are probably t with HCL, hard		og for coring rate secondary featur	
		laminations; thi detritus trace	n (1 mm or <) lan	minations of d tire core, incl	nedium gray wavy laystone and organio uding gastropods, & erous zones.			
		secondary gla	uconite in lenticu )Laminated, decr	ılar zones, tra	tk colored minerals, ace selenite gypsum ations and less wavy			
		same at brea claystone lamir	ks occurring at 2 lation, dark gray	67.3, @ 267. brown, 1mm	tion, very fine sand, 7-267.9, same with or less in thickness.	,		
268.9 - 273.9	Alt. medium gray to light gray	to laminated w	ith siltstone, Hea lamir	vy mineral la nations.	ark minerals, massive g deposits along thin			
		264.7, 264.8,	265.5, 266.2, 26 269.5, 269.9, 27	6.5, 266.7, 26	5, 263.3, 264.1, 264.4 67.35, 267.7, 267.9, 271.4, 272.1, 272.4, 9	1		
		_	coring. No staini	-	anges and are likely to suggest secondar	1		
i i								·
	] ]							
<u> </u>								
		l 						



PROJECT NUMBER BORING NUMBER

118069.KO TW-2A Core C-2

SHEET 1 OF 1

PROJECT :	Laredo ASR			LOCATION:	TW-2A @ Del Mar Treatment Plant
ELEVATION:	NA.		DRILLING CONTRACT	OR:	TWDB
DRILLING METH	OD AND EQU	JIPMENT USED :	Failing Mu	d Rotary - 6" core barn	el x 20', 7 7/8" pilot hole
SAMPLE RUN	C-2	START:	7/12/97 <b>END</b> :	7/1 <b>2/97</b>	LOGGER: Peter van Noort
DEPTH INTERVA		275.5-295'	LENGTH RECOVERY:	18.95	PERCENT RECOVERY: 97%
DEPTH	COLOR		LITHOLOGY and DISCONTIN		COMMENTS
	<b>332</b> 3.1	ROCK TYPE, MINI	ERALOGY, WEATHERING, HARD (BEDDING) ; FAULTS, ORIENTAT THICKNESS, SURFACE STAIR	NESS AND ROCK MASS TION, INFILLING MATERIAL	SIZE AND DEPTH OF CASING, FLUID LOSS,
275.5 - 295	Medium to	Sandstone very	fine, well sorted. 80% quar		
270.5 200	light gray		rose and smokey gtz, trace	•	
	"gan gruy		thin, wavy lams <1mm of		1
1	]		s, trace lignite in darker lan		į l
					.1
		Fracture Summar	y: 276.5, 277.1, 277.6, 277	.9, 279.7, 281.1, 282.3	.]
	,	283.5, 284, 284.5	, 286.1, 286.7, 287.1, 287.	5, 287.9, 288.2, 288.55	, ]
		288.95, 290, 290.	9, 291.8, 292.05, 293.4, 29	4.1, 294.35. All break	s (
	<b>i</b>		occur along bedding plan	nes.	1
	ĺ	ļ			1
	Į.				1
	i				
	•				
	į.	Į.			<b>\</b>
					1
		İ			
1					
l	1	j			
i					
1	1				
		l			
1					
ŀ		]			
ţ	1	<b>]</b>			1
	1	1			
ŀ	1	1			
:	i				
•	1				
l	l	1			
	1	1			
	1				
1	1				
1	1				
1	1				
1	1	1			I
1	1	1			
1	1	l .			i
	1				1
	I				
1	1	<b>§</b>			1
	j				İ
1					
1	I	ł			ł
1					1
1	l				1
	<u> </u>	<u> </u>			_l



BORING NUMBER

118069.K0

TW-2A - Core C-3 SHEET 1 OF 1

PROJECT:	Laredo ASR	LOCATION:	TW-2A @ Dei Mar Treatment Plant
ELEVATION:	NA	DRILLING CONTRACTOR:	TWDB
DRILLING METH	IOD AND EQ	JIPMENT USED: Failing Mud Rotary - 6" core barrel	x 20', 7 7/8" pilot hole
SAMPLE RUN	C-3	START: 7/12/97 END: 7/12/97	LOGGER: Peter van Noort
DEPTH INTERV	AL	295-315' <b>LENGTH RECOVERY</b> : 20.5	PERCENT RECOVERY: 100%
DEPTH	COLOR	LITHOLOGY and DISCONTINUMES	COMMENTS
		ROCK TYPE, MINERALOGY, WEATHERING, HARDNESS AND ROCK MASS CHARACTERISTICS (BEDDING); FAULTS, ORIENTATION, INFILLING MATERIAL,	SIZE AND DEPTH OF CASING, FLUID LOSS, CORING RATE AND SMOOTHNESS, CAVING
		THICKNESS, SURFACE STAINING	ROD DROPS, TEST RESULTS, ETC
295 - 300.5	Medium to	Sandstone, very fine, well sorted. 80% quartz, 20% glauconite? or	See visual log for coring rates, fractures,
	light gray	mafic minerals?, trace pyrite, jasper, selenite. Soft to medium	secondary features
		hardness. Calcified zone at 297, very hard.	
l .	<b>l</b>	Laminated (wavy) with heavy mineral deposits, trace cross bedding,	
Į.		trace laminations of silt. Trace fossil and organic zones @ 298.	
<b>!</b>		Organic tragments consisting of wood, leaf material?	
1		@300, vuggy zone - pyritic, fossils (oysters?) , dark brown to black, 1-	
}	1	1.5" infilled with sandstone, soft - some secondary minerals.	
		•	
200 5 240		011.1	
300.5 - 312	Dark gray	Siltstone, fine to coarse, medium gray, quartz and dark minerals	
Ì		dominate mineralogy, trace pyrite and selenite. Hard.	
I			
l		Strongly laminated, interbedded with 0.01-0.05' lams, of fine sand.	
1		Lenticular, boudin structures throughout - 1/4-1*, coarse material	
		generally surrounded by finer silt and sand.	
312 - 315		Sandy Siltstone, very fine sand. Medium gray, hard - soft, Wavy	
		laminations, trace clay laminations, trace pyrite.	
1			
		5 - 1 - 0	
1		Fracture Summary: 295.2, 296.3, 296.65, 297.1, 297.35, 297.6,	
ł	Į i	297.9, 298.1, 298.2, 298.5, 299.15, 299.6, 299.95, 300.5, 301.2, 302.25, 302.75, @303.1-305.8 vertical fracture w/ numerous	
i		horizontal breaks -drilling induced) 304.15, 304.65, 305.8, 308.15,	
	ļ	309.4, 309.9, 310.6, 311.7, 313.2, 314.5, 314.9, 315.05, 315.55	
1	•		
-			
1			
1	ł		
}			
l	ł		
1	İ		
1			
1			
1			1
	ŀ		
			Į
1			
Ì			
Į.			
	1		
	<u></u>		



BORING NUMBER

118069.K0

TW-2A - Core C-4 SHEET 1 OF 1

PROJECT:	Laredo ASR				LOCATION:	TW-2A @ Del Mar Treatm	ent Plant
ELEVATION:	NA.		DRILLING CO	ONTRACTOR	₹:	TWDB	
DRILLING METH	OD AND EQU	JIPMENT USED :		Failing Mud F	Rotary - 6° core barre	x 20°, 7 7/8" pilot hole	
SAMPLE RUN	C-4	START:	7/13/97	END:	7/13/97	LOGGER: Peter van No	ort
DEPTH INTERV	AL	330-348	LENGTH REC	COVERY:	3.6	PERCENT RECOVERY:	20%
DEPTH	COLOR		LITHOLOGY and D			COMMENTS	
Į				•	SS AND ROCK MASS	SIZE AND DEPTH OF CASING,	-
<b>j</b>		Characteristics	THICKNESS, SUR		N, INFILLING MATERIAL, 3	CORING RATE AND SMOOTHN ROD DROPS, TEST RESUL	
330 - 333.6	Medium to	Sandstone, v			30% quartz, 20%	See visual log for coring rate	
	light gray	glauconite? or m	nafic minerals?, S	econdary mi	nerals include trace	secondary features. Gree	
i		pyrite, selenite, t	-		eral. Soft to medium	pressure and worn core bit contributed to poor rec	
			hardness. Fri			- CONTINUES TO POOR 180	~·····
	·	Fractures: 330.			2.4, 332.95, 333.2,		1
			333.35	, 333.5			
Į į						1	1
	1						
							ı
	l						1
1							1
1	l.					1	1
							1
1						İ	
	l	l					Į.
1		ļ					ì
i							Į.
							l l
1	Ì						ł
1							
	1	i				Į.	Į.
ì	]	1					1
							ŀ
1	ļ						
ì	1	1				1	
1							
						Į.	Į.
1	1	1					
						į	
						1	
1	1						
						1	
	]					ĺ	
						1	
}						l	
1	1	]				1	
1						1	
1	1	1				1	
1		1					
1		1				1	
1		1				1	
	1	1				1	
1		1					
<b>\</b>	1	1				1	'
		<u> </u>					



PROJECT NUMBER 118069.K0

**BORING NUMBER** 

TW-2A - Core C-5 SHEET 1 OF 1

PROJECT:	Laredo ASR				LOCATION:	TW-2A @ De	l Mar Treatmei	nt Plant
ELEVATION:	NA		DRILLING CO	ONTRACTOR :		TWDB		
	IOD AND EQU	JIPMENT USED :			tary - 6" core barre		ilot hole	
SAMPLE RUN	C-5	START:	7/13/97	END:	7/13/97	LOGGER:	Peter van Nooi	t
DEPTH INTERV	<b>AL</b>	348 - 355	LENGTH RE	COVERY:	4.9	PERCENT RE	ECOVERY:	70%
DEPTH	COLOR		ITHOLOGY and D				COMMENTS	
				S, ORIENTATION,	S AND ROCK MASS INFILLING MATERIAL,	CORING RATE A	TH OF CASING, FL AND SMOOTHNES S, TEST RESULT:	S, CAVING
348 - 351.8	Light to dark	Alternating sa	ndstone and silts		ded, with minor	See visual log	for coring rates,	
	gray		nations; .5 - 1.5"	-		seco	ondary features.	
]		siltstone lames. T			mineralogy. soft to			
351.8 - 352.9	Dark gray	Siltetone to clave	mediun Sandstone		2.5 to end of core.	ļ		
331.0 - 332.3	Daik glay			inated. unconfo	ormable contact at			
		slick-n -sides, 60-d	laminations-1-3	3" fragments - t ngle fault with o 152, 352.3, 352.	iffset <b>@</b> 349.5 with .7. Such faults may			
	,							



BORING NUMBER

118069.K0

TW-2A - Core C-6 SHEET 1 OF 1

Lameta ACD				OCATION .	THE CA. (B. Del Man Treatme	ant Oleva
		DOULING CO				ent Plant
	IPMENT USED :				· · · · · · · · · · · · · · · · · · ·	
						ort
						50%
COLOR					1	
0020					SIZE AND DEPTH OF CASING,	FLUID LOSS.
	CHARACTERISTICS			INFILLING MATERIAL,	CORING RATE AND SMOOTHNE ROD DROPS, TEST RESUL	
Light to dark		•		•		
gray	glauconite. Lai			ard to soft (easy	secondary reatures. Core in 7/15/97.	ogged on
Dark gray	Siltstone, int			ace claystone	Notes: originally recovered	1.5-foot
	laminations, qui	artz and glauconit	e, pyrite, selen	ite. Hard to very	sample. "Fished out" addition core. Chose 385 feet as top section because top sand is n to have washed ou	of "fished" nostly zone
			•			:
	gray, coarser sill	and fine sand, si	rrounded by b	lack to dark green		,
Medium gray	Massive with trac	ce laminations. he igns of erosion ca	ard. Fragment used during co	s are 2-4" long and	1	
		ractures (.7 fracts	/ft); <b>@</b> 391.3-39	• • • • • • • • • • • • • • • • • • • •		
	C-6 AL COLOR  Light to dark gray  Dark gray	NA  OD AND EQUIPMENT USED:  C-6 START:  AL 380-399  COLOR  ROCK TYPE, MIN CHARACTERISTICS  Light to dark gray Siltstone, fine to glauconite. Lail laminations, quick hard. St.  Boudin structures layers  Evidence of bioth gray, coarser silt heavy minerals  Medium gray Sandstone, fine Massive with tract fractures show silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and silts and	NA DRILLING CO  OD AND EQUIPMENT USED:  C-6 START: 7/14/97  AL 380-399 LENGTH REC  COLOR  COLOR  ROCK TYPE, MINERALOGY, WEATHEI CHARACTERISTICS (BEDDING): FAULTS THICKNESS, SURI  Light to dark gray  Sandstone, fine to very fine. well s glauconite. Laminated, trace silt scratch wi  Siltstone, interbedded with fine laminations, quartz and glauconit hard. some laminations a  Boudin structures, evidence of min layers of sandstone. 1m  Evidence of bioturbation including gray, coarser silt and fine sand, su heavy minerals (secondary glau-  Medium gray)  Sandstone, fine. Well sorted. Sim Massive with trace laminations. he fractures show signs of erosion ca barr  Fracture Summary: Heavily fractu @385-391.3, 9 fractures (.7 fracts	NA DRILLING CONTRACTOR:  OD AND EQUIPMENT USED: Failing Mud Ro  C-6 START: 7/14/97 END:  AL 380-399 LENGTH RECOVERY:  COLOR  LITHOLOGY and DISCONTINUITIE  ROCK TYPE, MINERALOGY, WEATHERING, MARDNESS CHARACTERISTICS (BEDDING): FAULTS, ORIENTATION, THICKNESS, SURFACE STAINING  Light to dark gray  Sandstone, fine to very fine. well sorted. 70-80% glauconite. Laminated, trace silt laminations, has scratch with knife)  Dark gray  Siltstone, interbedded with fine sandstone, traininations, quartz and glauconite, pyrite, selent hard. some laminations are timy (react to the sandstone)  Boudin structures, evidence of minor claystone late layers of sandstone, 1mm - 2" siltstone Evidence of bioturbation including vertical burrow gray, coarser silt and fine sand, surrounded by be heavy minerals (secondary glauconite?) Trace  Medium gray  Sandstone, fine. Well sorted. Similar mineralogy Massive with trace laminations. hard. Fragments fractures show signs of erosion caused during cobarrel).  Fracture Summary: Heavily fractured @ 380-381	DRILLING CONTRACTOR:  OD AND EQUIPMENT USED: Failing Mud Rotary - 6" core barrel  C-6 START: 7/14/97 END: 7/14/97  AL 380-399 LENGTH RECOVERY: 9.55  COLOR  LITHOLOGY and DISCONTINUITIES  ROCK TYPE, MINERALOGY, WEATHERING, HARDNESS AND ROCK MASS CHARACTERISTICS (BEDDING): FAULTS, ORIENTATION, INFILLING MATERIAL, THICKNESS, SURFACE STAINING  Light to dark gray  Sandstone, fine to very fine, well sorted. 70-80% qtz, 20% mafics of glauconite. Laminated, trace silt laminations, hard to soft (easy scratch with knife)  Dark gray  Siltstone, interbedded with fine sandstone, trace claystone laminations, quartz and glauconite, pyrite, selenite. Hard to very hard. some laminations are timy (react with HCl).  Boudin structures, evidence of minor claystone laminations; .5 - 1.5" layers of sandstone, 1mm - 2" siltstone lames.  Evidence of bioturbation including vertical burrows infilled with light gray, coarser silt and fine sand, surrounded by black to dark green heavy minerals (secondary glauconite?) Trace shell fragments.  Medium gray  Sandstone, fine. Well sorted. Similar mineralogy (quartz majority). Massive with trace laminations. hard. Fragments are 2-4" long and fractures show signs of erosion caused during coring (core broke in barrel).  Fracture Summary: Heavily fractured @ 380-381.55 (7 fracturess), @ 385-391.3, 9 fractures (.7 fracts/ft); @ 391.3-393, 3 fractures (.56)	NA DRILLING CONTRACTOR: TWDB  IOD AND EQUIPMENT USED: Failing Mud Rotary - 6" core barrel x 20', 7 7/8" pilot hole.  C-6 START: 7/14/97 END: 7/14/97 LOGGER: Peter van No. 380-399 LENGTH RECOVERY: 9.55 PERCENT RECOVERY:  COLOR  LITHOLOGY and DISCONTINUTTIES COMMENTS  ROCK TYPE, MINERALOGY, WEATHERING, HARDNESS AND ROCK MASS CHARACTERISTICS (BEDDING): FAULTS, ORIENTATION, INFILLING MATERIAL, CORING, THICKNESS, SURFACE STAINING  Light to dark gray  Sandstone, fine to very fine. well sorted. 70-80% qtz, 20% mafics or glauconite. Laminated, trace silt laminations, hard to soft (easy scratch with knife)  Dark gray  Siltstone, interbedded with fine sandstone, trace claystone laminations, quartz and glauconite, pyrite, selenite. Hard to very hard. some laminations are limy (react with HCl).  Boudin structures, evidence of minor claystone laminations; .5 - 1.5" layers of sandstone, 1mm - 2" siltstone lames.  Evidence of bioturbation including vertical burrows infilled with light gray, coarser silt and fine sand, surrounded by black to dark green heavy minerals (secondary glauconite?) Trace shell fragments.  Medium gray  Sandstone, fine. Well sorted. Similar mineralogy (quartz majority). Massive with trace laminations. hard. Fragments are 2-4" long and fractures show signs of erosion caused during coring (core broke in barrel).  Fracture Summary: Heavity fractured @ 380-381.55 (7 fracturess), @ 385-391.3, 9 fractures (.7 fracts/ft); @ 391.3-393, 3 fractures (.56)



BORING NUMBER PROJECT NUMBER

118069.K0

TW-2A - Core C-7 SHEET 1 OF 1

	•				
PROJECT:	Laredo ASR		·	LOCATION:	TW-2A @ Del Mar Treatment Plant
ELEVATION:	NA_		DRILLING CONTRACT		TWDB
DRILLING METHO	D AND EQUI	PMENT USED:	Failing Mud Rotary - 6*	core barrel x 20', 7 7/8"	pilot hole
SAMPLE RUN	C-7		7/14/97 END:	7/14/97	LOGGER: Peter van Noort
DEPTH INTERVAL	L	399 - 419	LENGTH RECOVERY:	18.8	PERCENT RECOVERY: 94%
DEPTH	COLOR		LITHOLOGY and DISCONTIN	NUITIES	COMMENTS
			NERALOGY, WEATHERING, HAR S (BEDDING) ; FAULTS, ORIENT/ THICKNESS, SURFACE STA	ATION, INFILLING MATERIAL,	SIZE AND DEPTH OF CASING, FLUID LOSS, CORING RATE AND SMOOTHNESS, CAVING ROD DROPS, TEST RESULTS, ETC
399 - 404.35	Light to dark		to very fine, well sorted, 70		
	gray	Abrupt contact a	nated, trace silt & clay lamir t 404 - very hard sandstone	(calcified) - fossiliferous	
404.35 - 418.8	Dark gray		ty, massive with wavy lamin fard to very hard. boudin st		
		Fracture Summa	ry: @399 to 404, 11 fracture 6 fractures/14.45 ft		3,
-					



PROJECT NAME / LOCATION City of Laredo ASR Feasibility Study East Corridor Wall PROJECT #

118069.J0.ZZ

BORING # TW-3

DRILLING CONTRACTOR Texas Water Development Board

**WELL CONSTRUCTION** DIAGRAM

SUPERVISED BY B. Christian City of Laredo

**DEPTH TO WATER** 72.2 ft

DATE 4/8/97



ATTENTION OWNER: Confidentiality Privilege Notice on on reverse side of Well Owner's copy (pink)

#### State of Texas **WELL REPORT**

**Texas Water Well Drillers Advisory Council** MC 177 P.O. Box 13067 Austin, TX 78711-3067 512-238-0530

	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s					
1) OWNER City of Latedo ADORI (Name)	P.O. Box 2950, Laredo, texas 78044  (Street or RFD) (City) (State) (Zip)					
2) ADDRESS OF WELL:						
County Webb E. Corridor Lare (Street, RFD or other)	(City) (State) (Zip) GRID # 85-29-5					
	plection   Public Supply   De-watering XX Testwell   Lat 27°32.526' ubmitted to the TNRCC?   Yes   No   Logic 099°27. 159'					
	Vad 099° 27 159					
6) WELL LOG: DIAMETER OF HOLE	7) DRILLING METHOD (Check): 🗆 Driven					
Date Drilling: Dis. (in.) From (it.) To (ft.)	☐ Air Rotary X(3) Mud Rotary ☐ Bored					
Started 3/20 19 97 14-3/4 Surface 20	☐ Air Hammer ☐ Cable Tool ☐ Jetted					
Completed 4/15 1997 10-5/8 20 630	Other					
7-7/8 630 1000						
From (fL) To (fL) Description and color of formation material	8) Borehole Completion (Check): Open Hole Straight Wall					
0' 10' White Caliche	Underreamed A Gravel Packed Dother					
10' 40' Gray shale	If Gravel Packed give interval fromft. toft.					
40 55' Gypsum streak	Casing, Blank Pipe, and Well Screen Data:					
55' 435' Blue-gray shale & hard streak	New Steel, Plastic, etc. Setting (ft.) Gage					
435' 616' Gray Sandatone	Dis. or Perf., Slotted, etc. Casting					
616! 1000 Gray shale & hard streaks	(in.) Used Screen Mig., if commercial From To Screen					
	5-5/8 n Steel casing 0 430					
	6-5/8 n Shutter screen 430 610 040					
	6-5/8 n Steel casing   610   615					
	9) CEMENTING DATA [Rule 338.44(1)]					
	Cemented from 0 ft. to 420 ft. No. of sacks used 134					
	Mathodused Tremmie pipe					
	Cementedby T.W.D.B. & Halliburton					
(Use reverse side of Well Owner's copy, if necessary)	Distance to septic system field lines or other concentrated contemination 200 ft.					
13) TYPE PUMP:	Method of verification of above distanceEStimated consummation					
☐ Turbine ☐ Jet <b>\$36</b> Submersible ☐ Cylinder						
Other	10) SURFACE COMPLETION					
Depth to pump bowls, cyfinder, jet, etc., 405 ft.	S Specified Surface Slab installed [Rule 338.44(2)(A)]					
	Specified Steel Sleave Installed [Rule 338.44(3)(A)]					
14) WELL TESTS:	Pitiess Adapter Used [Rule 338.44(3)(b)]					
Type test: 🔀 Pump 🔲 Baller 🔲 Jeffed 🔲 Estimated	Approved Alternative Procedure Used [Rule 338.71]					
Yield: 60 gpm with 142 ft, drawdown after 8 hrs.	11) WATERLEVEL:					
	Static level 73 - 20 ft, below land surface Data 4-9-97					
15) WATER QUALITY:	Artesian flow gpm. Oats					
Did you knowingly penetrate any strate which contained undesirable constituents?						
TYES SKNO II YES, SUDMIT "REPORT OF UNDEBIRABLE WATER"	12) PACKERS: Type Depth					
Type of water? Depth of strate	None					
Was a chemical analysis made? ☐ Yes ☐ No						
understand that failure to complete items 1 thru 15 will result in the log(s) being return COMPANY NAME Texas Water Sevelopment Board	ch and all of the statements herein are true to the best of my knowledge and belief. I ned for completion and resubmittal.  WELL DRILL ER'S LICENSE NO. 2327 WT.					
(Type or print)	Texas 78728-7725					
ADDRESS 1700 Hydro Drive Aust						
Street or BFD	Lacred Acet					
(Signed) (Licensed Weil Driller)	(Signed) (Registered Diffler Traines)					
	yale, and other perlinent information, if available.					



118069.K0.ZZ

#### BORING NUMBER

TW-3

SHEET 1 OF 4

PROJECT Laredo ASR		LOCATION North East Co	orridor
ELEVATION	DRILLING CONTRACTOR	TWDB (Texas Water Developme	nt Board)
DRILLING METHOD AND EQUIPMENT_F	ailing Mud Rotary 10 7/8		
WATER LEVEL AND DATE	2 10 07	FINISH _4-7-97	LOGGER B. Christian

W	ATER I	LEVEL AND	DATE			START 3-19-97 FINISH 4-7-97	LOGGER B. Christian
	<b>≱</b> E	SAI	MPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
	SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
	0, —		1			CLAY, yellow orange, trace gravel	DRILLER NOTES:
	10		2			CLAY, dark gray	
	20		3			CLAY, same as above	
}	30 -		4			SANDSTONE, light gray, very fine grained	
	40 <b>-</b>		5			SANDSTONE, same as above, with some oyster shells	
			6			SANDSTONE, same as above	
ļ	60		7			SANDSTONE, gray, very fine grained	68-70 ft: Hard sandstone
	70 —		8			SHALE, dark gray	
.	80 —		9			SHALE, same as above	_
	90 —		10			SHALE, same as above	93-94 ft: Hard streak
	100' —		11			SILT, gray	
	110 -		12			SANDSTONE, light gray	118-123 ft: Hard streak —
ŀ	120		13			SANDSTONE, dark gray	110-123 II. Halu Stieak —
	130		14			SHALE, dark gray	
	140		15			SHALE, same as above	
-	150'		16			SHALE, same as above	
	160 —		17			SHALE, same as above	163-164 ft: Hard sandstone
1	170 —		18			SANDSTONE, dark gray	176-179 ft: Hard sandstone
	180 —		19			SHALE, dark gray	
1	190 —		20			SANDSTONE, gray, gypsum mottling	198-200 ft: Gray sandstone
- 1	200' —		21			SANDSTONE, same as above, darker gray	_
- {	210 —		22			SHALE, gray	
	220 —		23			SHALE, same as above	
-	230 -		24			SHALE, same as above	
	240 —		25			SANDSTONE, gray	242 ft: Hard streak
	250'		26			SANDSTONE, same as above, darker gray	
	260 —	-	27	<del> </del>		SANDSTONE, same as above	_
	270 —		28			SANDSTONE, same as above	_
	280 —		29			SANDSTONE, same as above	_
	290 —		30	_		SANDSTONE, dark gray, shaley	
ہا	300' —	<u> </u>		Ц	<u> </u>		



PROJECT NUMBE	Р	RO	<b>JECT</b>	NU	MBE
---------------	---	----	-------------	----	-----

#### BORING NUMBER

TW-3

SHEET 2 OF 4

PROJECT Laredo ASR		LOCATION North East Co	orridor	
ELEVATION	DRILLING CONTRACTOR_	TWDB (Texas Water Developme	nt Board)	
DRILLING METHOD AND EQUIPMENT Faili				
WATER I EVEL AND DATE	START 3-19-97	ENIGH 4-7-97	LOGGER 8. Christian	

WATER	LEVEL A	ND DATE			START 3-19-97 FINISH 4-7-97	LOGGER B. Christian
WO.		SAMPLE		STANDARD PENETRATION TEST	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
-300'-		31			SHALE, dark gray with gypsum mottling	DRILLER NOTES:
310		32			SHALE, same as above	-
320		33			SHALE, same as above	Grouted to surface
330 -		34			SANDSTONE, gray	
340 — <b>350'</b> —		35			SANDSTONE, same as above	
		36			SHALE, brownish gray	
360 -		37			SHALE, same as above	
370 — 380 —		38			SHALE, same as above	_
390 —		93			SANDSTONE, gray, inbedded shale with some gypsum 390-420'	_
400' —		40	L.—.		SANDSTONE, same as above	400 ft: Top of 20/40 sand
410 —		41		<u> </u>	SANDSTONE, same as above	1 430 K. 10p 01 20/40 3mld
420 —		42			SANDSTONE, same as above	415 ft: Top of 8/10 sand
430 —		43			SANDSTONE, same as above	430 ft: Top of 0.040 slot low carbon
440 —		44			SHALE, dark gray	shutter screen
450' —	<u> </u>	45			SANDSTONE, light gray	
460 —		46		ļ. <del>-</del>	SHALE, dark gray	
470	<u> </u>	47	Ĺ	ļ	SHALE, same as above	
480 —		48		<u> </u>	SHALE, same as above	
490 —		49		<u> </u>	SHALE, same as above	
500' —		50		<u> </u>	SHALE, same as above	
510 —	ļ	51	<u> </u>	<u> </u>	SHALE, light gray	
520 —	ļ	52			SHALE, dark gray	
530 —		53	Ļ	ļ	SANDSTONE, light gray	
540 —	-	54	ļ	<u> </u>	SANDSTONE, same as above	
550' —		55			SANDSTONE, same as above	
560 -	<u> </u>	56			SANDSTONE, same as above	
570 -	<u> </u>	57		<u> </u>	SANDSTONE, same as above	
580 -	ļ	58	<u> </u>		SANDSTONE, same as above	580-605 ft: Sandstone- good drilling
590 -		59	<u> </u>	<del> </del>	SHALE, dark gray	555 505 it. oandstone- good ullining
	<u> </u>	60			SHALE, same as above	



118069.K0.ZZ

BORING NUMBER

TW-3

SHEET 3 OF 4

PROJECT Laredo ASR		LOCATION North East C	orridor	
ELEVATION	DRILLING CONTRACTOR TV	DB (Texas Water Developme	nt Board)	
DRILLING METHOD AND EQUIPMENT Failing	Mud Rotary 10 7/8			
WATER LEVEL AND DATE	2-10-07	FINISH	LOGGER B. Christian	

WATER L	LEVEL A	ND DATE	<u> </u>		START 3-19-97 FINISH 4-7-97	LOGGER B. Christian
F		SAMPLE	·	STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	6"-6"-6" (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
600' 610					SANDSTONE, light gray	610 ft; Bottom of screen
					SANDSTONE, dark gray	610-615 ft: Blank casing sump
620					SHALE, dark gray	615'7" to ~630": Cement plug
630					SHALE, same as above	
640 <b>650</b>					SHALE, same as above	
					SHALE, gray	Native fill
660					SHALE, same as above	
670 —					SHALE, same as above	
680 —					SHALE, same as above	
690			<del>                                     </del>		SHALE, same as above	
700' —		-			SANDSTONE, gray	
710 —					SANDSTONE, same as above	
720 —					SHALE, gray	
730 —					SHALE, same as above	
740 —					SHALE, same as above	
750' —				1	SHALE, same as above	
760 —					SHALE, same as above	
770 —					SHALE, same as above	
780 -		<del>                                     </del>	<del>                                     </del>		SHALE, same as above	
790 🚽			<del> </del>		SHALE, same as above	
800.			<del> </del>		SHALE, same as above	
810 -	<u> </u>	<u> </u>	<del> </del>		SHALE, same as above	
820 —		<del>                                     </del>	<del> </del>		SHALE, same as above	
830 -			+		SHALE, same as above	
B40 —			<del>                                     </del>		SHALE, same as above	
850' —			-		SHALE, same as above	
860 -			-		SHALE, same as above	
870 —			+		SANDSTONE, light gray	
880 -			-		SANDSTONE, same as above	
890 —		-	┼		SHALE, dark gray	
900'—	<u> </u>	<u></u>		<u> </u>	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	



PROJECT	NUMBER
---------	--------

#### BORING NUMBER

TW-3

SHEET 4 OF 4

PROJECT Laredo ASR	LOCATION North East Corridor			
	DRILLING CONTRACTOR TWD	B (Texas Water Developme	nt Board)	
DRILLING METHOD AND EQUIPMENT Failing Mud Rotar	y 10 7/8			
WATER LEVEL AND DATE	0.40.07	_ FINISH	LOGGER B. Christian	

/ATER I	LEVEL A	ND DATE_			START 3-19-97 FINISH 4-7-97	LOGGER B. Christian
§€.	5	SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
OBDEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6*-6*-6* (N)	SOIL NAME, USGS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE, DRILLING FLUID LOSS, TESTS AND INSTRUMENTATION
910 —					900-1,000 ft: Interbedded SHALE and SANDSTONE	
920 —					-	Native fill
930 —						
940 -	ļ					
950' —					i	
960 -					1	
970	-					
980 -		<del>                                     </del>				
990 -			<u></u>	-		
000'-					TOTAL DEPTH = 1,001 ft bis	
4					TOTAL DEL TIT = 1,000. IL DIG	
_						
	1					
_						
	1					
	-					
	1					
	1					
	1					
	-					
	1					
-	-					
	-					
-	-					
	1					
	1					
	1					
_	-					
	1		ł			

# STATE OF TEXAS TEXAS WATER DEVELOPMENT BOARD Resistivity Log



**WELL: Mc Phereson Street Test Hole (TW-1) SWN = 85-29-103** 

OWNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

COUNTY: Webb

LOCATION: At City of Laredo, Mc Phereson St. elevated water tank site. Approximately 1 mile N from intersection of Mc Phereson St. and Del Mar Blvd. 1.45 miles from W line and 2.58 miles from N line of topo map 85-29 (Laredo East)

OTHER LOGS: Natural Gamma Ray, Fluid Resistivity, Spinner

Lat. 27-35-19N, Long. 099-28-34W

Date	1/21/1997	Fluid Level	10 feet				
Run No.	1	Type of Fluid in Hole	Natural Mu	Natural Mud			
Depth Driller	886	Source of Sample	Mud Pit	Mud Pit			
Depth Logger	885.4	Rm @ Meas. Temp	3.8 Ohms (	3.8 Ohms @ 77 degrees F			
First Reading	882	Density / pH	9.1 lbs. per	9.1 lbs. per gallon / 9.7			
Last Reading	64	Viscosity	33 seconds	33 seconds through Marsh funnel			
Casing-Driller	10 inches I.D. 0-40						
Casing-Logger	10 inches I.D. 0-40						
Bit Size	7.875 inces				-		
Recorded By	R. Williams	Elevation above Mean Sea Le	evel	GL = 526	KB= 529		
Witnessed By	R. Cano	Log Measured From = ground level					

Remarks: Logged for formation identification and to determine screen setting for well completion. Cased with 6 inch I.D. steel. Screened w stainless steel wire based screen330 - 390 and 440 - 490, TD = 495 feet. Log curve exhibits indications of potential formation invasion by drilling mud and presence of bedded Anhydrite/Gypsum.

SPONTANEOUS POTENTIAL	5" =100'	RESISTIVITY 16" & 64" ohms/m2
(+) 5 milivolts/division (-)	Depth	0 10

## TEXAS WATER DEVELOPMENT BOARD Natural Gamma Ray Log



WELL: Mc Phereson Street Test Hole (TW-1) SWN = 85-29-103

OWNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

COUNTY: Webb

Lat. 27-35-19N, Long. 099-28-34W

<u>LOCATION</u>: At City of Laredo, Mc Phereson St. elevated water tank site. Approximately 1 mile N from intersection of Mc Phereson St. and Del Mar Blvd. !.45 miles from W line and 2.58 miles from N line of topo map 85-29 (Laredo East)

OTHER LOGS: Resistivity, Spontaneous Potential, Spinne Fluid Resistivity

<u> </u>						
Date	1/21/97	Fluid Level	10 feet			
Run No.	1	Type of Fluid in Hole	Natural Mud			
Depth Driller	886	Source of Sample	Mud Pit			
Depth Logger	885.4	Rm @ Meas. Temp	3.8 ohms @ 77 degrees F			
First Reading	874	Density / pH	9.1 lbs per galion / 9.7			
Last Reading	0	Viscosity	33 secs through Marsh funnel			
Casing-Driller	10 inch I.D. steel 0-40'					
Casing-Logger	10 inch I.D. steel 0-40'					
Bit Size	7.875 inches					
Recorded By	R. Williams	Elev. above Mean Sen Level		GL = 526	KB= 529	
Witnessed By	R. Cano	Log Measured From = ground level				

Remarks: Logged for formation identification and to determine screen setting for well completion. Cased with 6 in. I.D. steel. Screened with stainless steel wire based screen 330 - 390 and 440 - 490. TD = 495 feet. Log curve indicates evidence of the potential presence bedded Anhydrite/Gypsum.



# STATE OF TEXAS TEXAS WATER DEVELOPMENT BOARD Spinner (fluid velocity) Log



WELL: Mc Phereson Street Test Hole (TW-1) SWN = 85-29-103

OWNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

COUNTY: Webb

<u>LOCATION</u>: At City of Laredo, Mc Phereson St. elevated water tank site. Approximately 1 mile N from intersection of Mc Phereson St. and Del Mar Blvd. !.45 miles from W line and 2.58 miles from N line of topo map 85-29 (Laredo East)

OTHER LOGS: Resistivity, Spontaneous Potential, Temperature and Fluid Resistivity, Natural Gamma Ray

Lat. 27-35-19N, Long. 099-28-34W

Date	4/16/97	Fluid Level	127 feet			
Run No.	2	Type of Fluid in Hole	Water			
Depth Driller	495	Source of Sample	Bore hole			
Depth Logger	495	Rm @ Meas. Temp	5.8 ohms @ 79.52 degrees F			
First Reading	320	Density / pH	N/A			
Last Reading	480	Viscosity	N/A			
Casing-Driller	6 inch I.D. steel 0-330'					
Casing-Logger	6 inch I.D. steel 0-330					
Bit Size	7.875 inches					
Recorded By	R. Williams	Elev. above Mean Sen Level		GL = 526	KB= 529	
Witnessed By	R. Cano	Log Measured From = ground le	vel			

Remarks: Cased with 6 in. I.D. steel. Screened with stainless steel wire based screen 330 - 390 and 440 - 490. Log curve indicates evidence potential invasion of drilling mud (natural), resulting in aquifer clogging and reflected in erratic fluid velocites. Logged down @20 feet per minute, while pumping @ 31 gallons per minute. Mud slurry filling borehole 486 to T.D.



## STATE OF TEXAS TEXAS WATER DEVELOPMENT BOARD Spinner (fluid velocity) Log



WELL: Mc Phereson Street Test Hole (TW-1) SWN = 85-29-103

OWNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

COUNTY: Webb

LOCATION: At City of Laredo, Mc Phereson St. elevated water tank site. Approximately 1 mile N from intersection of Mc Phereson St. and Del Mar Blvd. !.45 miles from W line and 2.58 miles from N line of topo map 85-29 (Laredo East)

OTHER LOGS: Resistivity, Spontaneous Potential, Temperature and Fluid Resistivity, Natural Gamma Ra

Lat. 27-35-19N, Long. 099-28-34W

Date	4/16/97	Fluid Level	127 feet				
Run No.	1	Type of Fluid in Hole	Water	Water			
Depth Driller	495	Source of Sample	Bore hole				
Depth Logger	495	Rm @ Meas. Temp	5.8 ohms @ 79.52 degrees F				
First Reading	480	Density / pH	N/A				
Last Reading	321	Viscosity	N/A				
Casing-Driller	6 inch I.D. steel 0-330'						
Casing-Logger	6 inch I.D. steel 0-330'						
Bit Size	7.875 inches						
Recorded By	R. Williams	Elev. above Mean Sen Level		GL = 526	<b>KB= 52</b> 9		
Witnessed By	R. Cano	Log Measured From = ground le	evel				
Wildiosou Dy							

Remarks: Cased with 6 in. I.D. steel. Screened with stainless steel wire based screen 330 - 390 and 440 - 490. Log curve indicates evid potential invasion of drilling mud (natural), resulting in aquifer clogging and reflected in erratic fluid velocites. Logged up @20 fc minute, while pumping @ 31 gallons per minute. Mud slurry filling borehole from 486 to T.D.



## TEXAS WATER DEVELOPMENT BOARD Temperature and Fluid Resistivity Log



**ELL:** Mc Phereson Street Test Hole (TW-1) SWN = 85-29-103

VNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

)UNTY: Webb

.. 27-35-19N , Long. 099-28-34W

CATION: At City of Laredo, Mc Phereson St. elevated water c site. Approximately 1 mile N from intersection of Mc Phereson and Del Mar Blvd. !.45 miles from W line and 2.58 miles from N of topo map 85-29 (Laredo East)

OTHER LOGS: Resistivity, Spontaneous Potential, Spinner, Natural Gamma Ray

e	4/16/97	Fluid Level	127 feet			
No.	1	Type of Fluid in Hole	Water			
oth Driller	495	Source of Sample	Bore hole			
oth Logger	495	Rm @ Meas. Temp	5.8 ohms @	79.52 degrees F		
st Reading	140	Density / pH	N/A			
t Reading	495	Viscosity	N/A			
ing-Driller	6 inch I.D. steel 0-330'					
ing-Logger	6 inch I.D. steel 0-330'					
Size	7.875 inches					
orded By	R. Williams	Elev. above Mean Sen Level		GL = 526	KB= 529	
nessed By	R. Cano	Log Measured From = ground le	vel	1 112 2 112 2 2 2 2		

marks: Cased with 6 in. I.D. steel. Screened with stainless steel wire based screen 330 - 390 and 440 - 490. Log curve indicates evidence of ential invasion of drilling mud (natural), resulting in aquifer clogging

emperature (in degrees C, up to right)	5" =100'	Fluid Resistivity (in Ohms, increasing to left)			
2 deg.C/inch, begin value=26.4	Depth	Scale = 1.2 ohm/division or 5 ohms/inch, End value = 6.6 ohms Begin value = 5.8 ohms			
24.4 ° C	140 >	5.8 ¢.ms.			
	150 >				

# STATE OF TEXAS TEXAS WATER DEVELOPMENT BOARD Resistivity Log



WELL: Del Mar Boulevard Test Hole (TW-2) SWN = 85-29-403

OWNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

COUNTY: Webb

LOCATION: At City of Laredo, Del Mar Blvd. elevated water tank site. Approximately 3 mile E from intersection of I.H. 35 and Del Mar Blvd. !.94 miles from W line and 3.35 miles from N line of topo map 85-29 (Laredo East)

OTHER LOGS: Natural Gamma Ray, Fluid Resistivity and Temperature

Lat. 27-34-36N, Long. 099-28-55W

Date	2/20/97	Fluid Level	10 feet				
Run No.	1	Type of Fluid in Hole	Natural Mud				
Depth Driller	776	Source of Sample	Mud Pit				
Depth Logger	777.5	Rm @ Meas. Temp	3.92 ohms@	77 degrees F			
First Reading	776	Density / pH	9.4 pounds	per gallon / 8.6			
Last Reading	37	Viscosity	34 seconds through marsh funnel				
Casing-Driller	10 inch I.D. steel 0-40'						
Casing-Logger	10 inch I.D. steel 0-36'						
Bit Size	7.875 inches						
Recorded By	R. Williams	Elev. above Mean Sen Level		GL = 500	KB= 503		
Witnessed By	R. Cano	Log Measured From = ground le	vel				

Remarks: Logged for formation identification and to determine screen setting for well completion. Screens set at 269 to 429. Log curve indicates evidence of the potential presence bedded Anhydrite/Gypsum and potential formation invasion by drilling mud.



## TEXAS WATER DEVELOPMENT BOARD Temperature and Fluid Resistivity Log



WELL: Del Mar Boulevard Test Hole (TW-2) SWN = 85-29-403

OWNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

COUNTY: Webb

<u>LOCATION</u>: At City of Laredo, Del Mar Blvd. elevated water tank site. Approximately 3 mile E from intersection of I.H. 35 and Del Mar Blvd. !.94 miles from W line and 3.35 miles from N line of topo map 85-29 (Laredo East)

OTHER LOGS: Natural Gamma Ray, Resistivity and Spontaneous Potential

Lat. 27-34-36N, Long. 099-28-55W

Date	4/15/97	Fluid Level	120 feet		
Run No.	1	Type of Fluid in Hole	groundwater		
Depth Driller	429	Source of Sample	N/A		
Depth Logger	429	Rm @ Meas. Temp	N/A		
First Reading	130	Density / pH	N/A		
Last Reading	429	Viscosity	N/A		
Casing-Driller	10 inch I.D. steel 0-40'				
Casing-Logger	10 inch I.D. steel 0-36'				
Bit Size	7.875 inches				
Recorded By	R. Williams	Elev. above Mean Sen Level		GL = 500	KB= 503
Witnessed By	R. Cano	Log Measured From = ground le	evel		

Remarks: Completed with ^inch I.D. steel casing. Non stainless louvered screens set at 269 to 429. Log curve indicates evidence of potent formation invasion by drilling mud. Logged down at 2 feet per minute.

Temperature (in degrees C, up to right)	5" =100"	Fluid Resistivity (in Ohms, increasing to left)
2 deg. C/inch, begin value = 26.2	Depth	Scale = 1.2 ohms/division or 5 ohms/inch, Begin value = 5.68 ohms
26.200	< 130 > First Reading	5.180
	K150 >	

## STATE OF TEXAS TEXAS WATER DEVELOPMENT BOARD Natural Gamma Ray Log



WELL: Del Mar Boulevard Test Hole (TW-2) SWN = 85-29-403

OWNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

COUNTY: Webb

LOCATION: At City of Laredo, Del Mar Blvd. elevated water tank site. Approximately 3 mile E from intersection of I.H. 35 and Del Mar Blvd. !.94 miles from W line and 3.35 miles from N line of topo map 85-29 (Laredo East)

OTHER LOGS: Resistivity, Spontaneous Potential, Fluid Resistivity

Lat. 27-34-36N, Long. 099-28-55W

Date	2/20/97	Fluid Level	10 feet		
Run No.	1	Type of Fluid in Hole	Natural Mu	ıd	
Depth Driller	776	Source of Sample	Mud Pit		
Depth Logger	775.4	Rm @ Meas. Temp	N/A		
First Reading	766	Density / pH	N/A		
Last Reading	0	Viscosity	N/A		
Casing-Driller	10 inch I.D. steel 0-40'				
Casing-Logger	10 inch I.D. steel 0-40'				
Bit Size	7.875 inches				
Recorded By	R. Williams	Elev. above Mean Sen Level		.GL = 500	KB= 503
Witnessed By	R. Cano	Log Measured From = ground	level		

Remarks: Logged for formation identification and to determine screen setting for well completion. Log curve indicates evidence of the potential presence bedded Anhydrite/Gypsum.





# CENTRAIGHT GOLLE

OTHER SERVICES:

## DELMAR TW-2

COMPANY : TEXAS MATER BOARD

HELL : DELMAR TH-2

LOCATION/FIELD : LAREDO : NEBE

STATE : TX

SECTION : TOWNSHIP : RANGE :

DATE : 07/26/97 PERHANENT DATUM : ELEVATIONS

DEPTH DRILLER : 429 ELEU. PERN. DATUM: KB :
LOG BOTTOM : 428.30 LOG NEASURED FROM: TOC DF :
LOG TOP : -2.20 DRL MEASURED FROM: TOC GL :

CASING DRILLER : 429 LOGGING UNIT : 9605
CASING TYPE : STEEL FIELD OFFICE : VEGAS

CASING THICKNESS: .25 RECORDED BY : D.STEWART

BIT SIZE : - BOREHOLE FLUID : H20 FILE : ORIGINAL

MAGNETIC DECL. : - RM : TYPE : 9041A MATRIX DENSITY : - RM TEMPERATURE : LOG : 2

FLUID DENSITY : 1.1 MATRIX DELTA T : PLOT : ROGER 27

NEUTRON MATRIX : LIMESTONE FLUID DELTA T : THRESH: 10000

REMARKS :

ALL SERVICES PROVIDED SUBJECT TO STANDARD TERMS AND CONDITIONS



OTHER SERVICES:

#### DELMAR TW-2 TIME DRIVE

COMPANY : TEXAS HATER BOARD

WELL : DELMAR TW-2 TIME DRIVE

: LAREDO LOCATION/FIELD : MEBB COUNTY

STATE : TX

SECTION TOWNSHIP RANGE

DATE 07/26/97 PERMANENT DATUM : ELEVATIONS

DEPTH DRILLER : 429 ELEV. PERM. DATUM: XB LOG MEASURED FROM: TOC LOG BOTTOM 279.90 ħF

LOG TOP 249.30 DRL MEASURED FROM: TOC GL

CASING DRILLER : 429 LOGGING UNIT : 9605 CASING TYPE : STEEL FIELD OFFICE : VEGAS

CASING THICKNESS: .25 RECORDED BY : D.STEMART

BIT SIZE BOREHOLE FLUID : H20 FILE : PROCESSED

MAGNETIC DECL. TYPE : 9718A RM

MATRIX DENSITY RM TEMPERATURE LDG

: ROGER 25 FLUID DEMSITY 1.1 MATRIX DELTA T PLOT

MEUTRON MATRIX : LIMESTONE FLUID DELTA T THRESH: 10000

REMARKS

THIS A TIME DRIVE, TOOK STATIONARY AT ABOUT 280 FT, DEPTH ON LOG IS NOT TRUE

DEPTH. STATIONARY LOG FOR 1 MINUTE WHILE WELL PUMPED AT 68 GPM



#### DELMAR TW-2

COMPANY

: TEXAS WATER BOARD

WELL.

: DELMAR TH-2

LOCATION/FIELD : LAREDO

COUNTY

: WEBB

STATE

: TX

SECTION

TOWNSHIP

RANGE :

DATE

: 87/26/97

ELEVATIONS

DEPTH DRILLER : 429

PERMANENT DATUM : ELEV. PERM. DATUM:

XB

LOG MEASURED FROM: TOC

DF

LOG BOTTOM LOG TOP

: 427.10 4.30

DRL MEASURED FROM: TOC

GL.

CASING DRILLER : 429

LOGGING UNIT

: 9605

CASING TYPE

: STEEL

FIELD OFFICE

: VEGAS

CASING THICKNESS: .25

RECORDED BY

: D.STEMART

BIT SIZE

BOREHOLE FLUID

: H20

FILE : PROCESSED

MAGNETIC DECL. : -

RM

TYPE : 9718A

OTHER SERVICES:

MATRIX DEMSITY : -

RM TEMPERATURE

LOG

FLUID DENSITY

: 1.1 MATRIX DELTA T

: ROGER 25 PLOT

NEUTRON MATRIX : LIMESTONE FLUID DELTA T

THRESH: 10000

REMARKS

Down survey at 30 ft/min static water.



### DELMAR TW-2

COMPANY

: TEXAS WATER BOARD

WELL

: DELMAR TW-2

LOCATION/FIELD : LAREDO

COUNTY

: WEBB

STATE

: TX

SECTION

**TOWNSHIP** 

RANGE :

DATE

: 87/26/97

ELEVATIONS

DEPTH DRILLER

FERMANENT DATUM : ELEV. PERM. DATUM:

LOG BOTTOM

: 429 : 427.10

LOG MEASURED FROM: TOC

XB DF

LOG TOP

4.30

DRL MEASURED FROM: TOC

GL.

CASING DRILLER : 429

LOGGING UNIT

: 9605

CASING TYPE

: STEEL

FIELD OFFICE

: VEGAS

CASING THICKNESS: .25

RECORDED BY

: D.STEMART

OTHER SERVICES:

BIT SIZE

BOREHOLE FLUID

: H20

FILE : PROCESSED

MAGNETIC DECL. : -

TYPE : 9718A

MATRIX DENSITY : -

RM TEMPERATURE

LBC: 0

FLUID DENSITY : 1.1

MATRIX DELTA T

PLOT : ROGER 25

NEUTRON MATRIX : LIMESTONE FLUID DELTA T

THRESH: 10000

REMARKS

Down survey at 30 ft/min static water.





DTHER SERVICES:

## DELMAR TW-2

COMPANY : TEXAS WATER BOARD

WELL : DELMAR TW-2

LOCATION/FIELD : LAREDO COUNTY : WEBB : TX

SECTION : TOWNSHIP : RANGE :

DATE : 07/26/97 PERMANENT DATUM : ELEVATIONS

DEPTH DRILLER : 429 ELEV. PERN. DATUM: KB :
LOG BOTTOM : 427.50 LOG MEASURED FROM: TOC DF :
LOG TOP : 270.10 DRL MEASURED FROM: TOC GL :

CASING DRILLER: 429 LOGGING UNIT: 9605
CASING TYPE: STEEL FIELD OFFICE: UEGAS

CASING THICKNESS: .25 RECORDED BY : D.STEMART

BIT SIZE : - BOREHOLE FLUID : H20 FILE : PROCESSED

MAGNETIC DECL. : - RM : TYPE : 9710A MATRIX DENSITY : - RM TEMPERATURE : LOG : 4

FLUID DENSITY : 1.1 MATRIX DELTA T : PLOT : ROGER 26

NEUTRON MATRIX : LIMESTONE FLUID DELTA T : THRESH: 10000

REMARKS :

Survey run up hole at 30 ft/min while pump running at 60 gal/min.

FILING NO.	INDUCTION-ELECTRIC  CH2M-HILL CO. INC. TW-2A	LOG SIGMA DATA		Hole Scale Down Hol		00 No. Panel No. Other	CONDUCTIVITY millimhos/meter
FIELD	WEBB STATE	TEXAS	Changes	Scale Up		S.0. Too	Ö
LOCATION:	LAREDO-DEL MAR TH-2A DEL MAR TREATMENT PLANT THP RGE	Other Services	Scale C	Dapth		SourceNo	/ITY
Permanent Datum Log Measured from G. DRILLING MEASURED FROM  Date Run No.	G. L. Elev. N/A L. , Ft. Above Permanent Date G. L.  15 JULY 1997 ONE	Elevations: KB um DF GL		Type Log		Run Tool Type ONE IND-GR	RESISTIV ohm-meter
Depth-Driller Depth-Logger Bottom Logged Interval Top Logged Interval Casing-Driller Casing-Logger	440 -439 -438 -41 - 9 9 9	9	Samples			0 0 0 0 -	DEPTHS
Bit Size Type Fluid in Hole  Density / Viscosity pH / Fluid Loss Source of Sample	7 7/8  NATIVE-GEL.  9.2 29 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	<u>ac</u>	<b>7</b>   9			n n n	OPEMENT BOARD POTENTIAL DITS R A Y ITS
Rm 8 Macs. Temp. Rmf 8 Macs. Temp. Rmc 8 Macs. Temp. Source of Rmf / Rmc Rm 8 BHT: Time Since Circ. Max. Rec. Temp. Deg. F. Equip. No. / Location Recorded By	2.7 8 98 F 9 F 9 2.3 8 98 F 9 F 9 2.8 8 98 F 9 F 9	F 0 7	Pre la Mud	Depth Driller Borehole Fluid	Dens./Visqueity pH /Fluid Loss Source of Sample	Rm & Nade. Temp. Rmf &Negs. Temp. Rmc &Negs. Temp. Source Rmf/Rmc Rm & BHT Rmf @ BHT Rmc @ BHT Rmc @ BHT	TEXAS MATER DEVELOPEMENT SPONTANEOUS POTENT #ILLIVOITS G A M M A R A Y API UNITS

# STATE OF TEXAS TEXAS WATER DEVELOPMENT BOARD Resistivity Log



WELL: East Corridor Test Hole (TW-3) SWN = 85-29-501

OWNER/PROJECT: City of Laredo / Laredo Aquifer Storage and Recovery Feasibility Investigation

COUNTY: Webb

LOCATION: At City of Laredo, East Corridor water tank site, near the location of the new airport terminal on East Corridor Rd. 2.97 miles from W line and 2.90 miles from S line of topo map 85-29 (Laredo East)

OTHER LOGS:

Lat. 27-32-31N, Long. 099-27-06W

Date	3/25/97	Fluid Level	5 feet				
Run No.	1	Type of Fluid in Hole	Natural M	ıd			
Depth Driller	1,001	Source of Sample	Mud Pit				
Depth Logger	998	Rm @ Meas. Temp	N/A				
First Reading	996	Density / pH	N/A				
Last Reading	12	Viscosity	N/A				
Casing-Driller	none						
Casing-Logger	none						
Bit Size	7.875 inches, 0 - 860	6.125, 860 - 1,001					
Recorded By	R. Williams	Elev. above Mean Sen Level		GL = 462	KB= 465		
Witnessed By	R. Cano	Log Measured From = ground	level				

Remarks: Logged for formation identification and to determine screen setting for well completion. Screens set at 430 to 610. Log curve indicates evidence of the potential presence bedded Anhydrite/Gypsum. SP and 64" resistivity non-functional due to electrical interference indicates evidence of the potential presence bedded Anhydrite/Gypsum.



#### TW-1 Well Loss Determination, March, 1997

Hantush-Bierschenk	Method of	Determining	Well Losse	es				
$s = BQ + CQ^2$ where					l loss (turbu	lent term)		
Lp = percentage hea	d loss attrib	utable to la	minar flow					
$Lp = BQ/(BQ + CQ^2)$								
Q=	50							
B =	2.19		(From grap					
C =	0.0252		(From grap	h)				
Lp =	63.48%		,					
CQ^2=	36.52%							
Q	s/Q	Q/s	S					
30	2.933333		88					
40	3.225		129					
50	3.46	0.289017	173	, .				
		TW.	March,	1007 Stor	Toet			
		Determi	nation of	Paramete	ers B & C			
4								
	数 …	1 3 10	7.0		48.4	te little	at i	
	<b>操</b> 护 48				<b>MA</b>	1. 164.		
3.5					500 B		Tatella .	
		100			بجلا	ri. Kiliki		
		- <b>1</b> 1			NAME:			
<u> </u>		3 - A	لز Till		<b>建模块</b>	10146		
sw/Qh		<b>孙,</b>		1	= sw/Qn /			
2.5		2-4			= (3.45-2.			
2.5	题行。				= 0.0252			
				В	= 2.19		717.	
2		14 4 <b>3 (</b> )	<del>- 1</del>					
		367			1379	175		
		14		4	14 7		, V	
1.5	****	er ereit.			p et			
0	10	20	3	0	40	50	60	
			Qn	(ft3)		<u> </u>	<del></del>	
		<del></del>		1				

Well Efficiency TW1AQTST.xls5/5/98





TW-1 Step Test, March, 1997 40 - 50 GPM

#### TW-2 Well Loss Determination -Pre-development March, 1997

Hantush-Bierschenk Method of Determining Well Losses

 $s = BQ + CQ^2$  where BQ is aquifer loss (laminar term),  $CQ^2$  is well loss (turbulent term)

Lp = percentage head loss attributable to laminar flow





TW2AQTST-fnl.xls5/15/98



TW-2 Step Test Plot TW2AQTST-fnl.xls5/15/98



#### TW-2 Well Loss Determination Post-Redevelopment

Hantush-Bierschenk Method of Determining Well Losses  $s = BQ + CQ^2$  where BQ is aquifer loss (laminar term),  $CQ^2$  is well loss (turbulent term)

Lp = percentage head loss attributable to laminar flow

$Lp = BQ/(BQ + CQ^2)$						
Q=	50.0000					
B =	1.1273		(From grap	h)		
C=	0.0044		(From grap	h)		
Lp =	83.65%					
CQ2=	11.0159					
	s (after 500					
Q (gpm)	mins)	s/Q	Calc Q/s	B	C=	0.004406
42	55.1	1.311905	0.76225	1.126837		
56	77	1.375	0.727273	1.128243		
68	97	1.426471	0.701031	1.126837		





TW-2 May, 1997 Post-Redevelopment Step Test





TW-2 Recovery Plot, March, 1997

#### TW-3 Well Loss Determination - Pre-redevelopment

Hantush-Bierschenk Method of Determining Well Losses  $s = BQ + CQ^2$  where BQ is aquifer loss (laminar term),  $CQ^2$  is well loss (turbulent term) Lp = percentage head loss attributable to laminar flow  $Lp = BQ/(BQ + CQ^2)$ Q= 50.0000 B = 1.3030 (From graph) C= 0.0066 (From graph) Lp = 79.90% CQ2= 16.3899 s/Q Q (gpm) Q/s В C= 0.006556 S 0.66666667 45 1.5 1.303321678 0.62857143 70 **1.590909** 1.302447552 52 0.60818713 85.5 **1.644231** 1.303321678

TW-3 - April, 1997 Step Test #1
Determination of Parameters B & C



Well Efficiency Calcs 5/15/98TW3REV-fnl.xls



TW-3 Step Test April 12, 1997 Pre-redevelompment



TW-3 Pump Test Results April, 1997

#### TW-3 Well Loss Determination - Post-redevelopment

Hantush-Bierschenk Method of Determining Well Losses  $s = BQ + CQ^2$  where BQ is aquifer loss (laminar term),  $CQ^2$  is well loss (turbulent term) Lp = percentage head loss attributable to laminar flow  $Lp = BQ/(BQ + CQ^2)$ Q= 50 B = 1.2065 (From graph) C= 0.0047 (From graph) Lp = 83.68% CQ2= 11.77 Q (gpm) Q/s s/Q 0.004707 40.5 30 0.74074074 1.35 1.208796296 62 1.409091 1.201992144 44 0.70967742 54 0.6835443 79 1.462963 1.208796296

TW-3 - May, 1997 Post Re-development Step Test Determination of Parameters B & C



2TW3AQTS-fnl.xls5/15/98



TW-3 Step Test May,1997 Post- Redevelopment

Step Test Graph 2TW3AQTS-fnl.xls5/15/98

#### LABORATORY TEST RESULTS

PROJECT: ASR

SAMPLE ID

85-20-901

LAB ID

AQ-01

DATE SAMPLED

12/04/96

DATE RECEIVED

12/04/96

TIME SAMPLED

10:58

TIME RECEIVED

p.m.

	PARAMETER					
TEST METHOD:	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	HECH
SM 2510 B	Conductivity	2,105		μS/cm	12/05/96	hm
SM 2540 C	Total Dissolved Solids	2,065		mg/L	12/05/96	hm
SM 2540 H+B	pН	7. <del>4</del> 7		S.U.	12/04/96	hm
SM 2320 B	Total Alkalinity as CaCO3	268		mg/L	12/10/96	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	ND		mg/L	12/10/ <del>9</del> 6	hm
SM 2320 B	Carbonate as CaCO3	ND	Calculated	mg/l		
SM 2320 B	Bicarbonates as CaCO3	268	Calculated	mg/L		
SM 2340 B	Hardness as CaCO3	389		mg/L	12/20/96	hm
EPA 300.7	Calcium	88	0.02	mg/L	12/20/96	jcm
	l., .					
EPA 300.0	Magnesium	41	0.02		12/20/96	jcm
EPA 300.0	Bromide	0.924	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrate	0.490	0.002	mg/L	12/05/96	jcm
EPA 300.0	Sulfate	876	0.02	mg/L	12/05/96	jcm
EPA 300.0	Chloride	315	0.02	mg/L	12/05/96	jcm
EPA 300.0	Flouride	2.629	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	12/05/96	jcm
1		ND	0.004	_	12/05/96	
EPA 300.0	Ortho-Phosphate	0.117	0.003	mg/L mg/L	12/20/96	jcm jcm
EPA 300.7	1	1	0.01	1		
EPA 300.7	Sodium	422	ŧ	mg/L	12/20/96	jcm
EPA 300.7	Potassium	7.096	0.01	mg/L	12/20/96	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	12/20/96	jcm
			1			1
				ļ		1

#### LABORATORY TEST RESULTS

PROJECT: ASR

SAMPLE ID

85-29-7

LAB ID

AQ-02

DATE SAMPLED

12/04/96

DATE RECEIVED

12/04/96

TIME SAMPLED

14:05

TIME RECEIVED

p.m.

	PARAMETER	SAMPLE RESULT	REPORTING LIMIT			
SM 2510 B	Conductivity	4,772		μS/cm	12/05/96	hm
SM 2540 C	Total Dissolved Solids	5,163		mg/L	12/05/96	hm
SM 2540 H+B	pΗ	7.84		S.U.	12/04/96	hm
SM 2320 B	Total Alkalinity as CaCO3	244		mg/L	12/10/96	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	18		mg/L	12/10/96	hm
SM 2320 B	Carbonate as CaCO3	36	Calculated	mg/f		
SM 2320 B	Bicarbonates as CaCO3	208	Calculated	mg/L		
SM 2340 B	Hardness as CaCO3	323		mg/L	12/20/96	hm
EPA 300.7	Calcium	83	0.02	mg/L	12/20/96	jcm
EPA 300.0	Magnesium	28	0.02		12/20/96	jcm
EPA 300.0	Bromide	1.74	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	12/05/96	jcm
EPA 300.0	Sulfate	2,830	0.02	mg/L	12/05/96	jcm
EPA 300.0	Chloride	743	0.02	mg/L	12/05/96	jcm
EPA 300.0	Flouride	5.841	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	12/05/96	jcm
EPA 300.0	Ortho-Phosphate	ND	0.003	mg/L	12/05/96	jcm
EPA 300.7	Lithium	0.073	0.01	mg/L	12/20/96	jcm
EPA 300.7	' Sodium	982	0.03	mg/L	12/20/96	jcm
EPA 300.7	Potassium	39.00	0.01	mg/L	12/20/96	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	12/20/96	jcm

# PROJECT: ASR

SAMPLE ID

85-37-403

LAB ID

AQ-03

DATE SAMPLED

12/05/96

DATE RECEIVED

12/05/96

TIME SAMPLED

11:40

TIME RECEIVED

p.m.

THEST METHOD:	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	-UNITES	BATE	
SM 2510 B	Conductivity	2,160		μ5/cm	12/05/96	hm
SM 2540 C	Total Dissolved Solids	2,243		mg/L	12/05/96	hm .
SM 2540 H+B	рН	7.38		S.U.	12/04/96	hm
SM 2320 B	Total Alkalinity as CaCO3	328		mg/L	12/10/96	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	8		mg/L	12/10/96	hm
SM 2320 B	Carbonate as CaCO3	16	Calculated	mg/l		
SM 2320 B	Bicarbonates as CaCO3	312	Calculated	mg/L		
SM 2340 B	Hardness as CaCO3	322		mg/L	12/20/96	hm
EPA 300.7	Calcium	76	0.02	mg/L	12/20/96	jcm
EPA 300.0	Magnesium	32	0.02		12/20/96	jcm
EPA 300.0	Bromide	0.64	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	12/05/96	jcm
EPA 300.0	Sulfate	1,027	0.02	mg/L	12/05/96	jcm
EPA 300.0	Chloride	243	0.02	mg/L	12/05/96	jcm
EPA 300.0	Flouride	3.23	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	12/05/96	jcm
EPA 300.0	Ortho-Phosphate	ND	0.003	mg/L	12/05/96	jcm
EPA 300.7	Lithium	0.09	0.01	mg/L	12/20/96	jcm
EPA 300.7	Sodium	521	0.03	mg/L	12/20/96	jcm
EPA 300.7	Potassium	5.52	0.01	mg/L	12/20/96	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	12/20/96	jcm
				]		
					<u> </u>	<u> </u>

# PROJECT: ASR

SAMPLE ID

85-37-405

LAB ID

AQ-04

DATE SAMPLED

12/03/96

DATE RECEIVED

12/04/96

TIME SAMPLED

15:50

TIME RECEIVED

a.m.

I EST MET AOD	PARAMETER	SAMPLE RESULT	RPORTINGIANT			
SM 2510 B	Conductivity	3,044		μS/cm	12/05/96	hm
SM 2540 C	Total Dissolved Solids	3,410		mg/L	12/05/96	hm
SM 2540 H+B	pН	7.43		S.U.	12/04/96	hm
SM 2320 B	Total Alkalinity as CaCO3	352		mg/L	12/10/96	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	ND		mg/L	12/10/96	hm
SM 2320 B	Carbonate as CaCO3	ND	Calculated	mg/l		
SM 2320 B	Bicarbonates as CaCO3	352	Calculated	mg/L		
SM 2340 B	Hardness as CaCO3	271		mg/L	12/20/96	hm
EPA 300.7	Calcium	107	0.02	mg/L	12/20/96	jcm
EPA 300.0	Magnesium	67	0.02		12/20/96	jcm
EPA 300.0	Bromide	1.03	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	12/05/96	jcm
EPA 300.0	Sulfate	1,801	0.02	mg/L	12/05/96	jcm
EPA 300.0	Chloride	356	0.02	mg/L	12/05/96	jcm
EPA 300.0	Flouride	4.6	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	12/05/96	jcm
EPA 300.0	Ortho-Phosphate	ND	0.003	mg/L	12/05/96	jcm
EPA 300.7	Lithium	0.14	0.01	mg/L	12/20/96	jcm
EPA 300.7	Sodium	892	0.03	mg/L	12/20/96	jcm
EPA 300.7	Potassium	7.56	0.01	mg/L	12/20/96	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	12/20/96	jcm

PROJECT: ASR

SAMPLE ID

85-29-301

LAB ID

AQ-05

DATE SAMPLED

12/03/96

DATE RECEIVED

12/04/96

TIME SAMPLED

14:35

TIME RECEIVED

a.m.

	PARAMETER	Sample Result.	REPORTING LIMIT	UNITS I		
SM 2510 B	Conductivity	3,362		μS/cm	12/05/96	hm
SM 2540 C	Total Dissolved Solids	3,465		mg/L	12/05/96	hm
SM 2540 H+B	pН	8.7		S.U.	12/04/96	hm
SM 2320 B	Total Alkalinity as CaCO3	280		mg/L	12/10/96	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	8		mg/L	12/10/96	hm
SM 2320 B	Carbonate as CaCO3	16	Calculated	mg/l		
SM 2320 B	Bicarbonates as CaCO3	264	Calculated	mg/L		
SM 2340 B	Hardness as CaCO3	103		mg/L	12/20/96	hm
				_		
EPA 300.7	Calcium	10	0.02	mg/L	12/20/96	jcm
 EPA 300.0	Magnesium	1.00	0.02		12/20/96	jcm
 EPA 300.0	Bromide	1.08	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	12/05/96	jcm
EPA 300.0	Sulfate	1,855	0.02	mg/L	12/05/96	jcm
EPA 300.0	Chloride	358	0.02	mg/L	12/05/96	jcm
EPA 300.0	Flouride	4.62	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	12/05/96	jcm
EPA 300.0	Ortho-Phosphate	ND	0.003	mg/L	12/05/96	jcm
EPA 300.7	Lithium	0.10	0.01	mg/L	12/20/96	jcm
EPA 300.7	Sodium	695	0.03	mg/L	12/20/96	jcm
EPA 300.7	Potassium	1.63	0.01	mg/L	12/20/96	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	12/20/96	jcm
		ĺ			İ	
				}		
			<u> </u>	<u></u>	<u> </u>	

### LABORATORY RESULTS

PROJECT: ASR

SAMPLE ID

85-2/0-102

LAB ID

AQ-06

DATE SAMPLED

12/03/96

DATE RECEIVED

12/04/96

TIME SAMPLED

16:20

TIME RECEIVED

a.m.

TEST METHOD	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS		
SM 2510 B	Conductivity	1,890		μS/cm	12/05/96	hm
SM 2540 C	Total Dissolved Solids	1,785		mg/L	12/05/96	hm
SM 2540 H+B	pН	8.92		S.U.	12/04/96	hm
SM 2320 B	Total Alkalinity as CaCO3	220		mg/L	12/10/ <del>9</del> 6	hm -
SM 2320 B	Phenolphthalein Alk as CaCO3	14		mg/L	12/10 <b>/9</b> 6	hm
SM 2320 B	Carbonate as CaCO3	28	Calculated	mg/l		
SM 2320 B	Bicarbonates as CaCO3	192	Calculated	mg/L		
SM 2340 B	Hardness as CaCO3	2.20		mg/L	12/20/96	hm
EPA 300.7	Calcium	3.19	0.02	mg/L	12/20/96	jcm
EPA 300.0	Magnesium	0.31	0.02	<u> </u> 	12/20/96	jcm
EPA 300.0	Bromide	1.11	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	12/05/96	jcm
EPA 300.0	Sulfate	521	0.02	mg/L	12/05/96	jcm
EPA 300.0	Chloride	397	0.02	mg/L	12/05/96	jcm
EPA 300.0	Flouride	2.35	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	12/05/96	jcm
EPA 300.0	Ortho-Phosphate	ND	0.003	mg/L	12/05/96	jcm
EPA 300.7	Lithium	0.03	0.01	mg/L	12/20/96	jcm
EPA 300.7	Sodium	349	0.03	mg/L	12/20/96	jcm
EPA 300.7	Potassium	0.90	0.01	mg/L	12/20/96	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	12/20/96	jcm

## PROJECT: ASR

SAMPLE ID

85-29-401

LAB ID

AQ-07

DATE SAMPLED

12/04/96

DATE RECEIVED

12/04/96

TIME SAMPLED

10:45

TIME RECEIVED

p.m.

1							
	TEST METHOD:	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
-	SM 2510 B	Conductivity	1,465		μS/cm	12/05/96	hm
	SM 2540 C	Total Dissolved Solids	1,318		mg/L	12/05/96	hm
	SM 2540 H+B	pН	8.85	1	S.U.	12/04/96	hm
	SM 2320 B	Total Alkalinity as CaCO3	276		mg/L	12/10/96	hm
	SM 2320 B	Phenolphthalein Alk as CaCO3	24		mg/L	12/10/96	hm
	SM 2320 B	Carbonate as CaCO3	48	Calculated	mg/l		
	SM 2320 B	Bicarbonates as CaCO3	228	Calculated	mg/L		
	SM 2340 B	Hardness as CaCO3	24		mg/L	12/20/96	hm
	EPA 300.7	Calcium	1.69	0.02	mg/L	12/20/96	jcm
				:			
	EPA 300.0	Magnesium	0.16	0.02		12/20/96	jcm
	EPA 300.0	Bromide	0.78	0.01	mg/L	12/05/96	jcm
	EPA 300.0	Nitrate	ND	0.002	mg/L	12/05/96	jcm
	EPA 300.0	Sulfate	329	0.02	mg/L	12/05/96	jcm
						;	
	EPA 300.0	Chloride	378	0.02	mg/L	12/05/96	jcm
	EPA 300.0	Flouride	0.83	0.01	mg/L	12/05/96	jcm
	EPA 300.0	Nitrite	ND	0.004	mg/L	12/05/96	jcm
	EPA 300.0	Ortho-Phosphate	ND	0.003	mg/L	12/05/96	jcm
	EPA 300.7	Lithium	0.02	0.01	mg/L	12/20/96	jcm
	EPA 300.7	Sodium	445	0.03	mg/L	12/20/96	jcm
	EPA 300.7	Potassium	0.67	0.01	mg/L	12/20/96	jcm
	EPA 300.7	Ammonium	ND	0.03	mg/L	12/20/96	jcm
					1		
					<u> </u>	<u></u>	

PROJECT: ASR

SAMPLE ID

85-20-706

LAB ID

AQ-08

DATE SAMPLED

12/04/96

DATE RECEIVED

12/04/96

TIME SAMPLED

13:55

TIME RECEIVED

p.m.

HEST METHOD:	PARAMETER -	SAMPLERESULT	REPORTING	Jus -		
SM 2510 B	Conductivity	1,546		μS/cm	12/05/96	hm
SM 2540 C	Total Dissolved Solids	1,420		mg/L	12/05/96	hm
SM 2540 H+B	pН	8.74		S.U.	12/04/96	hm
SM 2320 B	Total Alkalinity as CaCO3	340		mg/L	12/10/96	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	20		mg/L	12/10/96	hm
SM 2320 B	Carbonate as CaCO3	40	Calculated	mg/l		
SM 2320 B	Bicarbonates as CaCO3	300	Calculated	mg/L		
SM 2340 B	Hardness as CaCO3	9.23		mg/L	12/20/96	hm
EPA 300.7	Calcium	2.22	0.02	mg/L	12/20/96	jcm
EPA 300.0	Magnesium	0.90	0.02		12/20/96	jcm
EPA 300.0	Bromide	0.74	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	12/05/96	jcm
EPA 300.0	Sulfate	341	0.02	mg/L	12/05/96	jcm
EPA 300.0	Chloride	271	0.02	mg/L	12/05/96	jcm
EPA 300.0	Flouride .	0.87	0.01	mg/L	12/05/96	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	12/05/96	jcm
EPA 300.0	Ortho-Phosphate	ND	0.003	mg/L	12/05/96	jcm
EPA 300.7	Lithium	0.02	0.01	mg/L	12/20/96	jcm
EPA 300.7	Sodium	512	0.03	mg/L	12/20/96	jcm
EPA 300.7	Potassium	1.28	0.01	mg/L	12/20/96	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	12/20/96	jcm
			1			
			1			

PROJECT: ASR

SAMPLE ID

85-29-709

LAB ID

AQ-12

DATE SAMPLED

01/21/97

DATE RECEIVED

01/21/97

TIME SAMPLED

09:30

TIME RECEIVED

TEST METHOD	PARAMETER :	SAMPLE RESULT	REPORTING LIMIT		DATE	TECH
SM 2510 B	Conductivity	1366		μS/cm	01/23/97	pa
SM 2540 C	Total Dissolved Solids	1080		mg/L	01 <i>/</i> 23 <i>/</i> 97	jcm
SM 2540 H+B	рН	8.48		S.U.	01/23/97	pa
SM 2320 B	Total Alkalinity as CaCO3	325		mg/L	01/23/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	35		mg/L	01/23/97	hm
	Carbonate as CaCO3	42	Calculated	mg/l	02/07/97	am
	Bicarbonates as CaCO3	311	Calculated	mg/L	02/07/97	am
SM 2340 B	Hardness as CaCO3	11		mg/L	01/23/97	am
SM 4110 B	Calcium	NA		mg/L		hm
EPA 300.7	Calcium	2.4	0.02	mg/L	01/25/97	jcm
EPA 300.0	Magnesium	0.6	0.02	mg/L	01/25/97	jcm
EPA 300.0	Bromide	ND	0.01	mg/L	01/24/97	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	02/07/97	jcm
EPA 300.0	Sulfate	472	0.02	mg/L	02/07/97	jcm
SM 4110 B	Chlorides	NA		mg/L		pa
EPA 300.0	Chlorides	278	0.02	mg/L	02/07/97	jcm
EPA 300.0	Flouride	0.7	0.01	mg/L	02/07/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	02/07/97	jcm
EPA 300.0	Phosphate	ND	0.003	mg/L	02/07/97	jcm
EPA 300.7	Lithium	0.06	0.01	mg/L	01/25/97	jcm
EPA 300.7	Sodium	473	0.03	mg/L	01/25/ <del>9</del> 7	jcm
EPA 300.7	Potassium	1.5	0.01	mg/L	01/25/97	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	01/25/97	jcm
1			}			
		1	,			
				}		
	<u> </u>					

PROJECT: ASR

SAMPLE ID

85-29-804

LAB ID

AQ-13

DATE SAMPLED

01/21/97

DATE RECEIVED

01/21/97

TIME SAMPLED

10:20

TIME RECEIVED

TEST METHOD:	PARAMETER	SAMPLE RESIDE	REPORTING IMIT	UNIES		
SM 2510 B	Conductivity	2732		μS/cm	01/23/97	pa
SM 2540 C	Total Dissolved Solids	2200		mg/L	01/23/97	jcm
SM 2540 H+B	pН	8.13		S.U.	01/23/97	pa
SM 2320 B	Total Alkalinity as CaCO3	970		mg/L	01/23/ <del>9</del> 7	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	20		mg/L	01/23/97	hm
	Carbonate as CaCO3	24	Calculated	mg/l	02/07/97	am
	Bicarbonates as CaCO3	1134	Calculated	mg/L	02/07/ <del>9</del> 7	am
SM 2340 B	Hardness as CaCO3	10.3		mg/L	01/23/97	am
SM 4110 B	Calcium	NA		mg/L		hm
EPA 300.7	Calcium	2.5	0.02	mg/L	01/25/ <del>9</del> 7	jcm
EPA 300.0	Magnesium	1.3	0.02	mg/L	01/25/97	jcm
EPA 300.0	Bromide	1.3	0.01	mg/L	01/24/97	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	02/07/97	jcm
EPA 300.0	Sulfate	629	0.02	mg/L	02,07,97	jcm
SM 4110 B	Chlorides	NA		mg/L		pa.
EPA 300.0	Chlorides	482	0.02	mg/L	02,/07,/97	jcm
EPA 300.0	Flouride	1.7	0.01	mg/L	02/07/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	02,07,97	jcm
EPA 300.0	Phosphate	ND	0.003	mg/L	02/07/97	jcm
EPA 300.7	Lithium	0.11	0.01	mg/L	01/25/97	jcm
EPA 300.7	Sodium	956	0.03	mg/L	01/25/97	jcm
EPA 300.7	Potassium	2.1	0.01	mg/L	01/25/97	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	01/25/97	jcm
		<u> </u>	<u></u>	<u> </u>	<u> </u>	<u> 1</u>

# CITY OF LAREDO, WATER UTILITIES LAB SERVICES

PROJECT: ASR

DATE: Mar. 11,1998

Sample ID:

AQ-14 1/30/97 Lab ID:

AQ-14

Date Sampled: Time Sampled:

16:30

Date Received: 1/30/97 Time Received: 16:20

SAMPLE

TEST METHOD	PARAMETER	RESULT	UNITS	DATE	TECH
SM 2510B	Conductivity	2001	us/cm	1/31/97	JCM
SM 2540C	Total Dissolved Solids	1654	mg/L	1/30/97	НМ
SM 2540 H+B	рН	7.48	s.u.	1/31/97	НМ
SM 2320 B	Total Alkalinity	500	mg/L	1/31/97	НМ
SM 2320 B	Phenolphthalein Alkalinity	ND	mg/L	1/31/97	нм
SM 2320 B	Carbonate	О	mg/L	CALC.	
SM 2320 B	Bicarbonate	500	mg/L	CALC.	
SM 2320 B	Hardness	164	mg/L	1/31/97	PA
EPA 300.7	Calcium	36.7	mg/L	2/1/97	JCM
EPA 300.0	Magnesium	17.8	mg/L	1/31/97	PA
EPA 300.0	Bromide	5.1	mg/L	1/31/97	JCM
EPA 300.0	Nitrate	ND	mg/L	1/31/97	JCM
EPA 300.0	Sulfate	540	mg/L	1/31/97	JCM
EPA 300.0	Chloride	280	mg/L	1/31/97	JCM
EPA 300.0	Flouride	1.913	mg/L	1/31/97	JCM
EPA 300.0	Nitrite	ND	mg/L	1/31/97	JCM
EPA 300.0	Ortho-Phosphate	NA	mg/L	1/31/97	JCM
EPA 300.7	Lithium	0.182	mg/L	1/31/97	JCM
EPA 300.7	Potassium	6.257	mg/L	1/31/97	JCM
AM 4500 MH3	Ammonia Nitrogen	ND	mg/L	1/31/97	JCM

PROJECT: ASR

SAMPLE ID

AQ-14

LAB ID

AQ-14

DATE SAMPLED

01/30/97

DATE RECEIVED

01/30/97

TIME SAMPLED

15:45

TIME RECEIVED

TEST METHOD	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SM 2510 B	Conductivity	2,001		µS/cm	01/31/97	hm
SM 2540 C	Total Dissolved Solids	1.654		mg/L	01/31/97	þm
SM 2540 H+B	pΗ	7.48		S.U.	01/31/97	יחול
SM 2320 B	Total Alkalinity as CaCO3	500		mg/L	01/31/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	ND		mg/L	01/31/97	hm
	Carbonate ion	0	Calculated	mg/l	02/07/97	am
	Bicarbonate ion	610	Calculated	mg/L	02/07/97	am
SM 2340 B	Hardness as CaCO3	165		mg/L	01/31/97	hm
EPA 300.7	Calcium	37	0.02	mg/L	02/02/97	jcm
EPA 300.0	Magnesium	18	0.02	mg/L	02/02/97	jcm
EPA 300.0	Bromide	5.1	0.01	mg/L	01/31/97	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	01/31/97	jcm
EPA 300.0	Sulfate	541	0.02	mg/L	01/31/97	jcm
EPA 300.0	Chlorides	280	0.02	mg/L	01/31/97	jcm
EPA 300.0	Flouride	1.9	0.01	mg/L	01/31/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	01/31/97	jcm
EPA 300.0	o-Phosphate	ND	0.003	mg/L	01/31/97	jcm
EPA 300.7	Lithium	0.2	0.01	mg/L	02/02/97	jcm
EPA 300.7	Sodium	639	0.03	mg/L	02/02/97	jcm
EPA 300.7	Potassium	6.3	0.01	mg/L	02/02/97	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	02/02/97	jon
				1		
						1

PROJECT: ASR

SAMPLE ID

AQ-15

LAB ID

AQ-15

DATE SAMPLED

02/06/97

DATE RECEIVED

02/06/97

TIME SAMPLED

1230

TIME RECEIVED

TEST METHOD	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SM 2510 B	Conductivity	2890		μS/cm	02/10/97	pa
SM 2540 C	Total Dissolved Solids	1752		mg/L	02/20/97	jcm
SM 2540 H+B	pН	8.95		S.U.	02,/06/96	ра
SM 2320 B	Total Alkalinity as CaCO3	185		mg/L	02/07/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	27		mg/L	02/07/97	hm
	Carbonate as CaCO3	54	Calculated	mg/l	02/20/97	am
	Bicarbonates as CaCO3	131	Calculated	mg/L	02/20/97	am
SM 2340 B	Hardness as CaCO3	21		mg/L	02/20/97	am
SM 4110 B	Calcium	8		mg/L	02,/07,/97	hm
EPA 300.7	Calcium	7.61	0.02	mg/L	02/07/97	jcm
EPA 300.0	Magnesium	0.194	0.02	mg/L	02/13/97	jcm
EPA 300.0	Bromide	1.29	0.01	mg/L	02/07/97	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	02/07/97	jcm
EPA 300.0	Sulfate	616	0.02	mg/L	02/07/97	jcm
SM 4110 B	Chlorides	450		mg/L	02/07/97	pa
EPA 300.0	Chlorides	469	0.02	mg/L	02/07/97	jcm
EPA 300.0	Flouride	2.40	0.01	mg/L	02/07/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	02/07/97	jcm
EPA 300.0	Phosphate Phosphate	ND	0.003	mg/L	02/07/97	jcm
EPA 300.7	Lithium	0.06	0.01	mg/L	02/13/97	jcm
EPA 300.7	Sodium	736	0.03	mg/L	02/13/97	jcm
EPA 300.7	Potassium	2.36	0.01	mg/L	02/13/97	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	02/13/97	jcm
				}		

# PROJECT: ASR

SAMPLE ID

AQ-16

LAB ID

AQ-16

DATE SAMPLED

02/06/97

DATE RECEIVED

02/07/97

TIME SAMPLED

1935

TIME RECEIVED

Conductivity			JNITS -	PATE	
Conductivity	2880		μS/cm	02/10/97	PA
Total Dissolved Solids	1282		mg/L	02/20/97	нм
рН	9.0		S.U.	02/06/96	PA
Total Alkalinity as CaCO3	18 <del>4</del>		mg/L	02/07/ <del>9</del> 7	нм
Phenolphthalein Alk as CaCO3	20		mg/L	02/07/97	нм
Carbonate as CaCO3	40	Calculated	mg/l	02/20/97	AM
Bicarbonates as CaCO3	i <del>44</del>	Calculated	mg/L	02/20/97	AM
Hardness as CaCO3	20		mg/L	02/20/97	AM
Calcium as CaCO3	8.22		mg/L	02/07/97	HM
Calcium	6.72	0.02	mg/L	02/07/ <del>9</del> 7	JCM
Magnesium	0.308	0.02	mg/L	02/14/97	JCM
Bromide	1.15	0.01	mg/L	02/07/97	JCM
Nitrate	ND	0.002	mg/L	02/07/97	JCM
Sulfate	593	0.02	mg/L	02 <i>/</i> 07 <i>/</i> 97	JCM
Chlorides	455		mg/L	02/07/97	PA
Chlorides	481	0.02	mg/L	02,07,97	JCM
Flouride	2.20	0.01	mg/L	02/07/97	JCM
Nitrite	ND	0.004	mg/L	02/07/ <del>9</del> 7	JCM
Phosphate Phosphate	ND	0.003	mg/L	02,/07,/97	JCM
Lithium	ND	0.01	mg/L	02/14/ <del>9</del> 7	JCM
Sodium	739	0.03	mg/L	02/14/97	JCM
Potassium	1.98	0.01	mg/L	02/14/97	JCM
Ammonium	ND	0.03	mg/L	02/14/97	JCM
	pH Total Alkalinity as CaCO3 Phenolphthalein Alk as CaCO3 Carbonate as CaCO3 Bicarbonates as CaCO3 Hardness as CaCO3 Calcium as CaCO3 Calcium Magnesium Bromide Nitrate Sulfate Chlorides Chlorides Flouride Nitrite Phosphate Lithium Sodium Potassium Potassium	pH Total Alkalinity as CaCO3 Phenolphthalein Alk as CaCO3 Carbonate as CaCO3 Bicarbonates as CaCO3 Hardness as CaCO3 Calcium as CaCO3 Calcium as CaCO3 Calcium Bromide Bromide Bromide Chlorides Chlorides Chlorides Flouride Phosphate Lithium Sodium Potassium Potassium Phosphate Potassium Phosphate Potassium Potassium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium Possium P	pH       9.0         Total Alkalinity as CaCO3       184         Phenolphthalein Alk as CaCO3       20         Carbonate as CaCO3       40       Calculated         Bicarbonates as CaCO3       144       Calculated         Hardness as CaCO3       20       Calcium as CaCo3         Calcium as CaCO3       8.22       0.02         Magnesium       0.308       0.02         Bromide       1.15       0.01         Nitrate       ND       0.002         Sulfate       593       0.02         Chlorides       455       0.02         Chlorides       481       0.02         Flouride       2.20       0.01         Nitrite       ND       0.004         Phosphate       ND       0.003         Lithium       ND       0.01         Sodium       739       0.03         Potassium       1.98       0.01	pH       9.0       S.U.         Total Alkalinity as CaCO3       184       mg/L         Phenolphthalein Alk as CaCO3       20       mg/L         Carbonate as CaCO3       40       Calculated       mg/L         Bicarbonates as CaCO3       144       Calculated       mg/L         Hardness as CaCO3       20       mg/L       mg/L         Calcium as CaCO3       8.22       mg/L       mg/L         Calcium as CaCO3       8.22       0.02       mg/L         Magnesium       0.308       0.02       mg/L         Bromide       1.15       0.01       mg/L         Nitrate       ND       0.002       mg/L         Sulfate       593       0.02       mg/L         Chlorides       455       mg/L       mg/L         Chlorides       481       0.02       mg/L         Ritrite       ND       0.004       mg/L         Phosphate       ND       0.003       mg/L         Lithium       ND       0.01       mg/L         Sodium       739       0.03       mg/L         Potassium       1.98       0.01       mg/L	pH         9.0         S.U.         02,06,96           Total Alkalinity as CaCO3         184         mg/L         02,07,97           Phenolphthalein Alk as CaCO3         20         mg/L         02,07,97           Carbonate as CaCO3         40         Calculated         mg/L         02,20,97           Bicarbonates as CaCO3         144         Calculated         mg/L         02,20,97           Hardness as CaCO3         20         mg/L         02,20,97           Calcium as CaCO3         8.22         mg/L         02,07,97           Calcium as CaCO3         8.22         mg/L         02,07,97           Magnesium         0.308         0.02         mg/L         02,07,97           Magnesium         0.308         0.02         mg/L         02,07,97           Nitrate         ND         0.002         mg/L         02,07,97           Sulfate         593         0.02         mg/L         02,07,97           Chlorides         455         mg/L         02,07,97           Flouride         2.20         0.01         mg/L         02,07,97           Nitrite         ND         0.004         mg/L         02,07,97           Phosphate         ND

PROJECT: ASR

SAMPLE ID

AQ-17

02/06/97

DATE SAMPLED
TIME SAMPLED

2359

LAB ID

AQ-17

DATE RECEIVED

02/07/97

TIME RECEIVED

TEST METHOD	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	-ÚNITS	DATE	5 507
SM 2510 B	Conductivity	2900		μS/cm	02/10/97	pa
SM 2540 C	Total Dissolved Solids	1224		mg/L	02/10/97	jcm
SM 2540 H+B	pH	8.79		S.U.	02/10/96	pa
SM 2320 B	Total Alkalinity as CaCO3	180	į	mg/L	02/07/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	18		mg/L	02/07/97	hm
	Carbonate as CaCO3	36	Calculated	mg/l	02/20/97	am
	Bicarbonates as CaCO3	144	Calculated	mg/L.	02/20/97	am
SM 2340 B	Hardness as CaCO3	19		mg/L	02/20/97	hm
SM 4110 B	Calcium as CaCO3	8		mg/L	02/07/97	hm
EPA 300.7	Calcium	6.2	0.02	mg/L	02/14/97	jcm
EPA 300.0	Magnesium	0.38	0.02	mg/L	02/14/97	jcm
EPA 300.0	Bromide	1.17	0.01	mg/L	02/07/97	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	02/07/97	jcm
EPA 300.0	Sulfate	609	0.02	mg/L	02/07/97	JCM
SM 4110 B	Chlorides	445		mg/L	02/07/97	pa
EPA 300.0	Chlorides	426	0.02	mg/L	02/07/97	jcm
EPA 300.0	Flouride	2.22	0.01	mg/L	02/07/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	02/07/97	jcm
EPA 300.0	Phosphate	ND	0.003	mg/L	02/07/97	jcm
EPA 300.7	Lithium	ND	0.01	mg/L	02/14/97	jcm
EPA 300.7	Sodium	718	0.03	mg/L	02/14/97	jcm
EPA 300.7	Potassium	1.76	0.01	mg/L	02/14/97	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	02/14/97	jcm
			J			
		1				
					<u> </u>	

PROJECT: ASR

SAMPLE ID

AQ-18

0825

LAB ID

AQ-18

DATE SAMPLED
TIME SAMPLED

02/07/97

DATE RECEIVED

02/07/97

TIME RECEIVED

PARAMETER					
					pa
1	_	:	( ·		jcm
	ł				pa
[ '	l .		1	1	hm
1			1 -	1	hm
<b>\</b>	<b>\$</b>	Calculated	) ~		am
1		1	1		am
1	į	Calculated			hm
	İ		1 -		hm
1	ì	0.02	1 -		į .
				1	jcm
		ì	1		jcm
	l e	į.	1		jcm
1	ľ	1			jcm
	İ	0.02	_	1	jcm
			•		hm
		į	1 -		jcm
		[	*	1	jcm
1			-	ļ	jcm
1 '		1	_	1	jcm
<b>,</b>		1	1 -	i	jcm
Sodium	1	;	1		jcm
Potassium		1	mg/L	1	jcm
Ammonium	ND	0.03	mg/L	02/14/97	jcm
		Conductivity Total Dissolved Solids pH 8.83 Total Alkalinity as CaCO3 Phenolphthalein Alk as CaCO3 Bicarbonate as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates as CaCO3 Bicarbonates	Conductivity         2900           Total Dissolved Solids         1204           pH         8.83           Total Alkalinity as CaCO3         181           Phenolphthalein Alk as CaCO3         18           Carbonate as CaCO3         36         Calculated           Bicarbonates as CaCO3         145         Calculated           Hardness as CaCO3         18         Calculated           Calcium as CaCO3         8         0.02           Calcium as CaCO3         8         0.02           Magnesium         0.47         0.02           Bromide         1.24         0.01           Nitrate         ND         0.002           Sulfate         605         0.02           Chlorides         445         0.01           Chlorides         413         0.02           Flounde         2.26         0.01           Nitrite         ND         0.004           Phosphate         ND         0.003           Lithium         ND         0.01           Sodium         712         0.03           Potassium         1.65         0.01	Conductivity         2900         µS/cm           Total Dissolved Solids         1204         mg/L           pH         8.83         S.U.           Total Alkalinity as CaCO3         181         mg/L           Phenolphthalein Alk as CaCO3         18         mg/L           Carbonate as CaCO3         145         Calculated         mg/L           Hardness as CaCO3         18         mg/L         mg/L           Calcium as CaCO3         8         mg/L         mg/L           Calcium         5.74         0.02         mg/L           Magnesium         0.47         0.02         mg/L           Bromide         1.24         0.01         mg/L           Nitrate         ND         0.002         mg/L           Sulfate         605         0.02         mg/L           Chlorides         445         mg/L           Chlorides         413         0.02         mg/L           Flouride         2.26         0.01         mg/L           Nitrite         ND         0.004         mg/L           Phosphate         ND         0.003         mg/L           Lithium         ND         0.01         mg/L	Conductivity         2900         µS/cm         02/10/97           Total Dissolved Solids         1204         mg/L         02/10/97           pH         8.83         S.U.         02/10/96           Total Alkalinity as CaCO3         181         mg/L         02/07/97           Phenolphthalein Alk as CaCO3         18         mg/L         02/07/97           Carbonate as CaCO3         36         Calculated         mg/L         02/20/97           Bicarbonates as CaCO3         145         Calculated         mg/L         02/20/97           Hardness as CaCO3         18         mg/L         02/07/97           Hardness as CaCO3         18         mg/L         02/12/97           Calcium as CaCO3         8         mg/L         02/12/97           Calcium as CaCO3         8         mg/L         02/12/97           Magnesium         0.47         0.02         mg/L         02/14/97           Bromide         1.24         0.01         mg/L         02/07/97           Nitrate         ND         0.002         mg/L         02/07/97           Chlorides         445         mg/L         02/07/97           Chlorides         413         0.02         mg/L

PROJECT: ASR

SAMPLE ID

AQ-19

LAB ID

AQ-19

DATE SAMPLED

02/07/97

DATE RECEIVED

02/07/97

TIME SAMPLED

1145

TIME RECEIVED

TEST METHOD	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SM 2510 B	Conductivity	2900		μS/cm	02/10/97	pa
SM 2540 C	Total Dissolved Solids	1240		mg/L	02/10/97	jcm
SM 2540 H+B	pН	8.82		S.U.	02/10/96	pa
SM 2320 B	Total Alkalinity as CaCO3	180		mg/L	02/10/97	pa
SM 2320 B	Phenolphthalein Alk as CaCO3	25	:	mg/L	02/10/97	pa
	Carbonate as CaCO3	50	Calculated	mg/l	02/20/97	am
	Bicarbonates as CaCO3	130	Calculated	mg/L	02/20/97	am
SM 2340 B	Hardness as CaCO3	NA'		mg/L		
SM 4110 B	Calcium as CaCO3	8.02		mg/L	02/11/97	pa
EPA 300.7	Calcium	5.71	0.02	mg/L	02/14/97	jcm
EPA 300.0	Magnesium	0.524	0.02	mg/L	02/14/97	jcm
EPA 300.0	Bromide	1.13	0.01	mg/L	02/11/97	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	02/11 <i>/</i> 97	jcm
EPA 300.0	Sulfate	614	0.02	mg/L	02/11/97	jcm
SM 4110 B	Chlorides	445		mg/L	02/11 <i>/</i> 97	hm
EPA 300.0	Chlorides	549	0.02	mg/L	02/11/97	jcm
EPA 300.0	Flouride	2.2	0.01	mg/L	02/11/ <del>9</del> 7	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	02/11 <i>/</i> 97	jcm
EPA 300.0	Phosphate	ND	0.003	mg/L	02/11/97	jcm
EPA 300.7	Lithium	ND	0.01	mg/L	02/14/97	jcm
EPA 300.7	Sodium	715	0.03	mg/L	02/14/97	jcm
EPA 300.7	Potassium	1.67	0.01	mg/L	02/14/97	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	02/14/97	jcm
						1
ļ			}			
1						
	1					

¹ Note: Due to loss of sample, hardness as CaCO₃ was not measured

PROJECT: ASR

SAMPLE ID

AQ-20

LAB ID

AQ-20

DATE SAMPLED

02/07/97

DATE RECEIVED

02/07/97

TIME SAMPLED

1355

TIME RECEIVED

TEST METHOD	PARAMETER:	SAMPLE RESULT	REPORTING LIMIT		<b>M</b> ET	
SM 2510 B	Conductivity	2910		μS/cm	02/10/97	jcm
SM 2540 C	Total Dissolved Solids	1300		mg/L	02/10/97	jcm
SM 2540 H+B	pН	8.88		S.U.	02/10/96	pa
SM 2320 B	Total Alkalinity as CaCO3	182		mg/L	02/10/97	pa
SM 2320 B	Phenolphthalein Alk as CaCO3	15		mg/L	02/10/97	pa
	Carbonate as CaCO3	30	Calculated	mg/l	02/20/97	am
	Bicarbonates as CaCO3	146	Calculated	mg/L	02/20/97	am
SM 2340 B	Hardness as CaCO3	17		mg/L		
SM 4110 B	Calcium as CaCO3	8.01		mg/L	02/11/97	pa
EPA 300.7	Calcium	5.48	0.02	mg/L	02/14/97	jcm
EPA 300.0	Magnesium	0.871	0.02	mg/L	02/14/97	jcm
EPA 300.0	Bromide	1.230	0.01	mg/L	02/11/97	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	02/11/ <del>9</del> 7	jcm
EPA 300.0	Sulfate	593	0.02	mg/L	02/11/ <del>9</del> 7	jcm
SM 4110 B	Chlorides	482		mg/L	02/11/ <del>9</del> 7	hm
EPA 300.0	Chlorides	549	0.02	mg/L	02/11/97	jcm
EPA 300.0	Flouride	2.34	0.01	mg/L	02/11/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	02/11/97	jcm
EPA 300.0	Phosphate	ND	0.003	mg/L	02/11/97	jcm
EPA 300.7	Lithium	ND	0.01	mg/L	02/14/97	jcm
EPA 300.7	Sodium	703	0.03	mg/L	02/14/97	jcm
EPA 300.7	Potassium	1.7	0.01	mg/L	02/14/97	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	02/14/97	jcm
1		1				
						}
1		1	1	1		1

PROJECT: ASR

SAMPLE ID

AQ-21

LAB ID

AQ-21

DATE SAMPLED

02/08/97

DATE RECEIVED

02/10/97

TIME SAMPLED

0810

TIME RECEIVED

TEST METHOD	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	-UNIIS	DATE	iii:e:I
SM 2510 B	Conductivity	2930		μS/cm	02/10/97	jcm
SM 2540 C	Total Dissolved Solids	1764		mg/L	02/20/97	hm
SM 2540 H+B	рH	8.58		S.U.	02/11/96	hm
SM 2320 B	Total Alkalinity as CaCO3	182		mg/L	02/11/96	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	16		mg/L	02/11/96	hm
	Carbonate as CaCO3	32	Calculated	mg/l	02/20/97	am
	Bicarbonates as CaCO3	150	Calculated	mg/L	02/20/97	am
SM 2340 B	Hardness as CaCO3	17		mg/L	02/11/97	hm
SM 4110 B	Calcium as CaCO3	6.4		mg/L	02/11/97	hm
EPA 300.7	Calcium	5.1	0.02	mg/L	02/14/97	jcm
EPA 300.0	Magnesium	0.59	0.02	mg/L	02/14/97	jcm
EPA 300.0	Bromide	1.27	0.01	mg/L	02/11/97	jcm
EPA 300.0	Nitrate	ND	0.002	mg/L	02/11/97	jcm
EPA 300.0	Sulfate	631	0.02	mg/L	02/11/97	jcm
SM 4110 B	Chlorides	445		mg/L	02/11/97	hm
EPA 300.0	Chlorides	489	0.02	mg/L	02/11/97	jcm
EPA 300.0	Flouride	2.3	0.01	mg/L	02/11 <i>/</i> 97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	02/11/ <del>9</del> 7	jcm
EPA 300.0	Phosphate	ND	0.003	mg/L	02/11/97	jcm
EPA 300.7	Lithium	ND	0.01	mg/L	02/14/97	jcm
EPA 300.7	Sodium	708	0.03	mg/L	02/14/97	jcm
EPA 300.7	Potassium	1.54	0.01	mg/L	02/14/97	jcm
EPA 300.7	Ammonium	ND	0.03	mg/L	02/14/97	jcm
				<u> </u>		
1						
					İ	



QUALITY CONTROL RESULTS

Job Number: 970777

Date: 03/19/97

CUSTOMER: City of Laredo

PROJECT:

ATTN: Adrian Montemayor

Heti			sta Analysis (IC	AP)	Report	ing Limits 1		Analys	t: gcc
C	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	Units	Date/Time
CV	, .	M0057	5.06900		5.00		101.4	% REC	03/18/97 1345
CB			0.01328						03/18/97 1409
В		200.7	0.00327						03/18/97 1419
D 9	970609-11		134.87251			137.61285	2.0	RPD	03/18/97 1431
CV		M0057	5.18075		5.00		103.6	% REC	03/18/97 1512
CV		M0057	5.04632		5.00		100.9	% REC	03/18/97 1519
CB			0.00202	,					03/18/97 153
D !	970742-1		16.85875			17.87253	5.8	RPD	03/18/97 1618
S	970742-1	M3520	18.83610		1.00	17.87253	96.4	% REC	03/18/97 162
CB			-0.03261						03/18/97 1653
י ס	970777-2		6.72875			7.07161	5.0	RPD	03/18/97 173
CV		M0057	5.06387		5.00		101.3	% REC	03/18/97 174
CV		M0057	4.95749		5.00		99.1	% REC	03/18/97 174
CB			0.08768						03/18/97 175
В		M3520B	2.09682		2.00		104.8	% REC	03/18/97 183
В		M3520B	2.12781		2.00	•	106.4	% REC	03/18/97 183
٦Ų		M0057	4.80400		5.00		96.1	% REC	03/18/97 184
3			0.08842						03/18/97 184
Het	hod Descri	orrest EPA ption:: Met	als Analysis (IC	AP)	Repor	ting Limit: 0	.05	Anelys	t: gcc
Met Par	hod Descri	ption.: Met	als Analysis (IC	AP)  GC Result	Repor	ting Liait: D	.05	Analys Units	
Met Par C	hod Destri ameter	ption.: Met : Mag Reagent	als Analysis (10 nesium (Mg) ————————————————————————————————————		Reportunits True Value	ting Limit: D	1.05 g/L		Date/Time
Het Par C CV	hod Destri ameter	Reagent M0058	sis Analysis (IC nesium (Mg) QC Result 1.04205		Report Units  True Value  1.00	ting Limit: D	205 gg/L Calc. Result 104.2	Units % REC	Date/Time 03/18/97 113
Met Par C CV CV	hod Destri ameter	Reagent M0058 M0058	sis Analysis (10 nesium (Mg) QC Result 1.04205 1.02569		Report Units  True Value  1.00 1.00	ting Limit: D	205 gg/L Calc. Result 104.2 102.6	Units % REC % REC	Date/Time 03/18/97 113 03/18/97 131
Met Par C CV CV CV	hod Destri ameter	Reagent M0058	als Analysis (10 nesium (Mg) QC Result 1.04205 1.02569 4.96994		Report Units  True Value  1.00	ting Limit: D	205 gg/L Calc. Result 104.2	Units % REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134
Met Par C CV CV CV CB	hod Destri ameter	Reagent	ais Analysis (10 nesium (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002		Report Units  True Value  1.00 1.00	ting Limit: D	205 gg/L Calc. Result 104.2 102.6	Units % REC % REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 140
Par CV CV CV CCV	hod Destri ameter	Reagent	als Analysis (IC nesium (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962		True Value  1.00 1.00 5.00	ting Limit: D	205 gg/L Calc. Result 104.2 102.6	Units % REC % REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 140 03/18/97 141
Par C CV CV CV CB B CS	hod Descri	Reagent	ais Analysis (10 nesium (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002		Report Units  True Value  1.00 1.00	ting Limit: D	Calc. Result  104.2 102.6 99.4	Units  X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 140 03/18/97 141 03/18/97 142
Par CV CV CV CB B CS	hod Destri ameter	Reagent  M0058 M0058 M0057 200.7 M3520	als Analysis (IC nesium (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811		True Value  1.00 1.00 5.00	ting Limit: 0	Calc. Result  104.2 102.6 99.4 90.8	Units  X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 141 03/18/97 142 03/18/97 143
C CV CCV CCB IB CCS CCV	hod Descri	Reagent  M0058 M0058 M0057  200.7 M3520 M0057	ats Analysis (IC nestum (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851		True Value  1.00 1.00 5.00  1.00	ting Limit: 0	104.2 102.6 99.4 90.8 1.8 105.0	Units  X REC X REC X REC X REC RPO	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 140 03/18/97 141 03/18/97 142 03/18/97 151
Par C CV CV CCV CCB B CCS CCV	hod Descri	Reagent  M0058 M0058 M0057 200.7 M3520	ats Analysis (IC nestum (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570		True Value  1.00 1.00 5.00	ting Limit: 0	104.2 102.6 99.4 90.8 1.8	Units  X REC X REC X REC X REC RPO X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 140 03/18/97 141 03/18/97 143 03/18/97 151 03/18/97 151
Par CV CV CCV CCB B CCS CCV CCV CCV CCV CCV CCV CCV CCV CCV	hod Descri	Reagent  M0058 M0058 M0057  200.7 M3520 M0057	ats Analysis (IC nestum (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945		True Value  1.00 1.00 5.00  1.00	ting Limit: 0	104.2 102.6 99.4 90.8 1.8 105.0	Units  X REC X REC X REC X REC RPO X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 151
Par CV CV CCV CCB B CCS CCV CCB	hod Descri ameter Lab ID 970609-11	Reagent  M0058 M0058 M0057 200.7 M3520 M0057 M0057	als Analysis (10 nesium (Mg)  QC Result  1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717		True Value  1.00 1.00 5.00  1.00	ting Limit: 0	104.2 102.6 99.4 90.8 1.8 105.0 101.9	Units  X REC X REC X REC X REC X REC X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 140 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 151 03/18/97 153 03/18/97 151
Ret Par C CV CV CB B CS D CV CCV CCV CCV CCV CCV	hod Descri	Reagent	ats Analysis (IC nestum (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945		True Value  1.00 1.00 5.00  1.00 5.00	ting Limit: 0	104.2 102.6 99.4 90.8 1.8 105.0 101.9 9.1	Units  X REC X REC X REC X REC RPD X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 134 03/18/97 140 03/18/97 141 03/18/97 142 03/18/97 153 03/18/97 151 03/18/97 151 03/18/97 161 03/18/97 161
Het Par C CV CV CV CB B CS CV CCV CCV CCV CCV CCV CCV CCV CCV C	hod Descri ameter Lab ID 970609-11	Reagent  M0058 M0058 M0057 200.7 M3520 M0057 M0057	als Analysis (10 nesium (Mg)  QC Result  1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119		1.00 1.00 5.00 5.00 1.00	ting Limit: 0	205 g/L Calc. Result 104.2 102.6 99.4 90.8 1.8 105.0 101.9 9.1 96.5	Units  X REC X REC X REC X REC RPD X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 134 03/18/97 140 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 151 03/18/97 151 03/18/97 162 03/18/97 162 03/18/97 163
Hett Par C CV CV CCV CCB B CCV CCV CCB CCV CCV C	970609-11 970742-1	Reagent	als Analysis (IC nestum (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119 0.01797		1.00 1.00 5.00 5.00 1.00	28.75441	205 201 Calc. Result  104.2 102.6 99.4  90.8 1.8 105.0 101.9  9.1 96.5 104.6	Units  X REC X REC X REC X REC RPD X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 140 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 151 03/18/97 162 03/18/97 163 03/18/97 163 03/18/97 163 03/18/97 163
Met: Par C CV CV CB CCV CB CCV CCB CCV CCB CCV CCB	970609-11 970742-1 970777-2	Reagent  M0058 M0058 M0057  200.7 M3520 M0057  M3520 M0057	als Analysis (10 nesium (Mg)  QC Result  1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119		1.00 1.00 5.00 5.00 1.00	ting Limit: 0	205 g/L Calc. Result 104.2 102.6 99.4 90.8 1.8 105.0 101.9 9.1 96.5	Units  X REC X REC X REC RPO X REC X REC X REC X REC X REC	Date/Time  03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 151 03/18/97 162 03/18/97 162 03/18/97 163 03/18/97 163 03/18/97 163
Het: Par C CV CV CV CCB B CCV CCB CCV CCB CCV CCB CCV CCC CCC	970609-11 970742-1	Reagent  M0058 M0058 M0057  200.7 M3520  M0057  M3520  M3520  M3520  M3520  M3520	ais Analysis (IC nesium (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119 0.01797 1.35786 2.24087		True Value  1.00 1.00 5.00  1.00 5.00  1.00 5.00 5	28.75441  1.51960 1.38133	205 207L Calc. Result 104.2 102.6 99.4 90.8 1.8 105.0 101.9 9.1 96.5 104.6 1.7	Units  X REC X REC X REC RPO X REC X REC X REC RPD X REC X REC RPD X REC X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 151 03/18/97 161 03/18/97 162 03/18/97 163 03/18/97 163 03/18/97 163 03/18/97 163 03/18/97 173
HetiPar CVCVCCBBCCCCCBBCCCCCBBCCCCCCCCCCCCCCCC	970609-11 970742-1 970777-2	Reagent  M0058 M0058 M0057  200.7 M3520 M0057  M3520 M0057  M3520 M0057	ats Analysis (IC nestum (Mg) QC Result 1.04205 1.02569 4.96994 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119 0.01797 1.35786 2.24087 5.16107		True Value  1.00 1.00 5.00  1.00 5.00 1.00 5.00 1.00 5.00	28.75441  1.51960 1.38133	104.2 102.6 99.4 90.8 1.8 105.0 101.9 9.1 96.5 104.6	Units  X REC X REC X REC RPO X REC X REC X REC X REC X REC X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 151 03/18/97 163 03/18/97 163 03/18/97 163 03/18/97 173 03/18/97 173
HetiPar C CV CCV CCB B CS CCV CCB B CS CCV CCB B CS CCV CCB B CS CCV CCB B CS CCV CCCB	970609-11 970742-1 970777-2	Reagent  M0058 M0058 M0057  200.7 M3520  M0057  M3520  M3520  M3520  M3520  M3520	ais Analysis (IC nesium (Mg) QC Result 1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119 0.01797 1.35786 2.24087		True Value  1.00 1.00 5.00  1.00 5.00  1.00 5.00  1.00 5.00	28.75441  1.51960 1.38133	104.2 102.6 99.4 90.8 1.8 105.0 101.9 9.1 96.5 104.6 1.7 86.0 103.2	Units  X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 134 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 153 03/18/97 161 03/18/97 162 03/18/97 163 03/18/97 163 03/18/97 163 03/18/97 172 03/18/97 173
HetiPar Par C CV CV CCV CCB B CCV CCB CCV CCB CCV CCB CCV CCB CCV CCB CCV CCCV C	970609-11 970742-1 970777-2	Reagent  M0058 M0058 M0057  200.7 M3520 M0057  M3520 M0057  M3520 M0057	als Analysis (10 nestum (Mg)  QC Result  1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119 0.01797 1.35786 2.24087 5.16107 5.05152		True Value  1.00 1.00 5.00  1.00 5.00  1.00 5.00  1.00 5.00	28.75441  1.51960 1.38133	104.2 102.6 99.4 90.8 1.8 105.0 101.9 9.1 96.5 104.6 1.7 86.0 103.2	Units  X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 131 03/18/97 140 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 161 03/18/97 162 03/18/97 163 03/18/97 163 03/18/97 173 03/18/97 172 03/18/97 172 03/18/97 172 03/18/97 172
Hetiper Covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to the covered to th	970609-11 970742-1 970777-2	Reagent	als Analysis (10 nestum (Mg)  QC Result  1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119 0.01797 1.35786 2.24087 5.16107 5.05152 0.01257		1.00 1.00 5.00 1.00 5.00 1.00 5.00	28.75441  1.51960 1.38133	90.8 105.0 104.2 102.6 99.4 90.8 1.8 105.0 101.9 9.1 96.5 104.6 1.7 86.0 103.2 101.0	Units  X REC X REC X REC RPD X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC	Date/Time  03/18/97 113 03/18/97 134 03/18/97 140 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 151 03/18/97 151 03/18/97 163 03/18/97 163 03/18/97 163 03/18/97 163
HetiPar Par CV CV CCV CCV CCV CCV CCV CCV CCV CCV	970609-11 970742-1 970777-2	Reagent	als Analysis (10 nesium (Mg)  QC Result  1.04205 1.02569 4.96994 -0.02002 -0.01962 0.90811 28.23038 5.24851 5.09570 0.00945 1.38717 2.48500 5.23119 0.01797 1.35786 2.24087 5.16107 5.05152 0.01257 1.95416		1.00 1.00 5.00 1.00 5.00 1.00 5.00 1.00 5.00	28.75441  1.51960 1.38133	Calc. Result  104.2 102.6 99.4  90.8 1.8 105.0 101.9  9.1 96.5 104.6 1.7 86.0 103.2 101.0 97.7	Units  X REC X REC X REC RPD X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC X REC	Date/Time 03/18/97 113 03/18/97 134 03/18/97 140 03/18/97 141 03/18/97 142 03/18/97 143 03/18/97 153 03/18/97 151 03/18/97 163 03/18/97 163 03/18/97 163 03/18/97 173 03/18/97 174 03/18/97 175 03/18/97 175 03/18/97 175 03/18/97 175 03/18/97 175 03/18/97 175 03/18/97 175 03/18/97 175 03/18/97 175



QUALITY CONTROL RESULTS

Job Number: 970777

Date: 03/19/97

CUSTOMER: City of Laredo

PROJECT:

ATTN: Adrian Montemayor

Net	thod Descri	ption.: Pot	els Analysis (IC	AP)	Report	ting Limit: 1		Analys	t: gcc
QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	Units	Date/Time
ICA		M0054	10.01218		10.00		100.1	% REC	03/18/97 1325
CCV		M0057	4.89646		5.00		97.9	% REC	03/18/97 1345
CCB			-0.08526						03/18/97 1409
MB		200.7	-0.41412						03/18/97 1419
MD	970609-11		38.95249			39.15956	0.5	RPD	03/18/97 1431
CCV		M0057	4.82798	,	5.00		96.6	% REC	
CCB			0.98623	,		4 44570			03/18/97 1537
	970742-1		2.23623			1.68578	0.55045	ABS Diff.	
CCB			0.26376			4 04/77	A 0/00T		03/18/97 1653
	970777-2		1.60550		F 00	1.84633	0.24083	ABS Diff.	
CCV		M0057	4.87385		5.00		97.5	% REC	03/18/97 1741
CCV		M0057	4.77064		5.00		95.4	% REC	03/18/97 1748
CCB			0.66513			4 0//77	A 2470A	400 D. C.	03/18/97 1759
	970777-2	147F30D	1.19266		2.00	1.84633	0.21789	ABS Diff.	
SB		M3520B	2.27064		2.00 2.00		113.5 98.6	% REC	03/18/97 1834
SB		M3520B M0057	1.97247				96.6	% REC	03/18/97 1837
24.6		m: ILI3/	4.82798		5.00		70.0	% REC	
٦٧ B،			0.94036						03/18/97 1844
:B Te: He:	st Method	: EPA	0.94036 200.7 els Anetysis (IC	AP)	Repor	ting Limit	.0	Analys	03/18/97 1844 st: gcc
:B Te: He:	st Method	: EPA ption:: Met	0.94036 200.7 els Anetysis (IC	AP)  QC Result	Repor	ting Limit: 1	.0	Analys Units	
Te: Ne: Pa:	st Method thod Descri	ption: EPA	0.94036 200.7 els Analysis (IC ium (Ne)		Repor Units	ting Limit: 1	.0 g/L		Date/Time
Te: He: Pa: QC	st Method thod Descri	: EPA ption:: Met : Sod Reagent	0.94036  200.7 als Analysis (IC ium (Na)  QC Result		Reportinits True Value	ting Limit: 1	.0 g/L Calc. Result	Units	it: gec
Te: Ne: Pa:	st Method thod Descri	ption:: EPA ption:: Met: Sod  Reagent M0054	0.94036  200.7 als Analysis (IC ium (Na)  QC Result  1.04679		Reportinits True Value	ting Limit: 1	.0 g/L Calc. Result 104.7	Units % REC	Date/Time 03/18/97 1325
Te: He: Pa: CCV	st Method thod Descri	ption:: EPA ption:: Met: Sod  Reagent M0054	0.94036  200.7 als Analysis (IC iLm (Na)  QC Result  1.04679 4.89359		Reportinits True Value	ting Limit: 1	.0 g/L Calc. Result 104.7	Units % REC	Date/Time 03/18/97 1325 03/18/97 1345
Ter Her Par QC ICV CCV CCB	st Method., thod Descri rameter Lab ID	ption:: EPA ption:: Met: Sod  Reagent  M0054 M0057	0.94036  200.7  als Analysis (IC  ium (Na)  QC Result  1.04679 4.89359 -0.00269		Reportinits True Value	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9	Units % REC % REC	Date/Time 03/18/97 1325 03/18/97 1345 03/18/97 1409
Te: Hei Pai  CCV CCB MB	st Method., thod Descri rameter Lab ID	ption:: EPA ption:: Met: Sod  Reagent  M0054 M0057 200.7	0.94036  200.7  als Analysis (IC ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636		Report Units True Value 1.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9	Units % REC % REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1409 03/18/97 1419 03/18/97 1423 03/18/97 1431
Ter Ner Par CCV CCV CCB MB LCS	st Methodthod Descripaneter  Lab ID  970609-11	ption:: EPA ption:: Met: Sod  Reagent  M0054 M0057 200.7	0.94036  200.7  als Anatysis (IC ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389		1.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8	Units  X REC X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1409 03/18/97 1419 03/18/97 1423
Te: He Pai	st Method, thod Descripemeter  Lab ID  970609-11	Reagent M0054 M0057 200.7 M3520	0.94036  200.7 als Analysis (IC ium (Na)  QC Result  1.04679 4.89359 -0.00636 0.88389 1187.96557 5.18924 5.09991		Report Units True Value 1.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1	Units  X REC X REC X REC RPD X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1419 03/18/97 1419 03/18/97 1423 03/18/97 1431 03/18/97 1512 03/18/97 1515
Teres Helpes Pair ICV CCV CCB MB LCS MC CCV CCV CCB	st Method, thod Descripemeter  Lab ID  970609-11	Reagent M0054 M0057 M0057	0.94036  200.7 als Analysis (IC ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389 1187.96557 5.18924 5.09991 0.03030		1.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8	Units  X REC X REC X REC RPD X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1419 03/18/97 1423 03/18/97 1431 03/18/97 1512 03/18/97 1515 03/18/97 1537
Te: He Pai	st Method thod Descri- rameter Lab ID  970609-11	Reagent M0054 M0057 M0057	0.94036  200.7 als Analysis (IC ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389 1187.96557 5.18924 5.09991 0.03030 0.01745		1.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8 102.0	Units  X REC X REC REC RPD X REC X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1409 03/18/97 1419 03/18/97 1423 03/18/97 1512 03/18/97 1515 03/18/97 1537 03/18/97 1653
GC Test Me TCV CCV CCB MB LCS MD CCV CCB MB CCW CCW CCB MD CCW CCB CCB MD	st Method thod Descripaneter Lab ID  970609-11	Reagent M0054 M0057 200.7 M3520 M0057 M0057	0.94036  200.7 als Analysis (IC ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389 1187.96557 5.18924 5.09991 0.03030 0.01745 560.91516		Reportinits True Value 1.00 5.00 1.00 5.00 5.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8 102.0	Units  X REC X REC X REC X REC X REC RPD X REC X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1409 03/18/97 1419 03/18/97 1431 03/18/97 1512 03/18/97 1515 03/18/97 1537 03/18/97 1653 03/18/97 1731
REPRESENTED TO THE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE PRISE	st Method thod Descripaneter Lab ID  970609-11	Reagent M0054 M0057 M0057	0.94036  200.7 ais Analysis (IC ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389 1187.96557 5.18924 5.09991 0.03030 0.01745 560.91516 5.07068		1.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8 102.0	Units  X REC X REC X REC X REC X REC RPD X REC X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1409 03/18/97 1419 03/18/97 1423 03/18/97 1512 03/18/97 1512 03/18/97 1515 03/18/97 1537 03/18/97 1653 03/18/97 1731 03/18/97 1748
AB Tel: He Pas QC CCV CCB MB LCS HD CCV CCB HD CCV CCB CCC CCC CCC CCC CCC CCC CCC CCC	st Method thod Descripaneter Lab ID  970609-11	Reagent M0054 M0057 200.7 M3520 M0057 M0057	0.94036  200.7  als Analysis (IC  ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389 1187.96557 5.18924 5.09991 0.03030 0.01745 560.91516 5.07068 0.22447		1.00 5.00 5.00 5.00	ting Limit: 1	20 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8 102.0 3.5 101.4	Units  X REC X REC RPD X REC X REC X REC X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1409 03/18/97 1419 03/18/97 1431 03/18/97 1512 03/18/97 1515 03/18/97 1537 03/18/97 1653 03/18/97 1731 03/18/97 1731 03/18/97 1748 03/18/97 1759
AB Teleficial Peal Peal Peal Peal Peal Peal Peal Pe	st Method thod Descripaneter Lab ID  970609-11	Reagent M0054 M0057 200.7 M3520 M0057 M0057 M0057	0.94036  200.7  als Analysis (IC  ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389 1187.96557 5.18924 5.09991 0.03030 0.01745 560.91516 5.07068 0.22447 2.43716		1.00 5.00 1.00 5.00 5.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8 102.0 3.5 101.4 121.9	Units  X REC X REC RPD X REC X REC X REC X REC X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1449 03/18/97 1449 03/18/97 1431 03/18/97 1515 03/18/97 1515 03/18/97 1537 03/18/97 1653 03/18/97 1731 03/18/97 1731 03/18/97 1731 03/18/97 1739 03/18/97 1759 03/18/97 1834
Test Help Pass Pass MD CCV CCB MB LCS MD CCV CCB MB SB SB	st Method thod Descripemeter Lab ID  970609-11	Reagent M0054 M0057 200.7 M3520 M0057 M0057 M0057 M3520B M3520B	0.94036  200.7  als Analysis (IC  ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389 1187.96557 5.18924 5.09991 0.03030 0.01745 560.91516 5.07068 0.22447 2.43716 2.54854		Repor Units True Value 1.00 5.00 1.00 5.00 5.00 5.00 2.00 2.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8 102.0 3.5 101.4 121.9 127.4	Units  X REC X REC RPD X REC X REC X REC X REC X REC X REC X REC X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1449 03/18/97 1423 03/18/97 1431 03/18/97 1515 03/18/97 1515 03/18/97 1537 03/18/97 1653 03/18/97 1731 03/18/97 1731 03/18/97 1731 03/18/97 1731 03/18/97 1731 03/18/97 1734
AB Teleficial February CCV CCB MB LCS MD CCV CCB CCB CCB MD CCV CCB SB	st Method thod Descripemeter Lab ID  970609-11	Reagent M0054 M0057 200.7 M3520 M0057 M0057 M0057	0.94036  200.7  als Analysis (IC  ium (Na)  QC Result  1.04679 4.89359 -0.00269 -0.00636 0.88389 1187.96557 5.18924 5.09991 0.03030 0.01745 560.91516 5.07068 0.22447 2.43716		1.00 5.00 1.00 5.00 5.00 5.00	ting Limit: 1	.0 g/L Calc. Result 104.7 97.9 88.4 2.1 103.8 102.0 3.5 101.4 121.9	Units  X REC X REC RPD X REC X REC X REC X REC X REC	Date/Time  03/18/97 1325 03/18/97 1345 03/18/97 1449 03/18/97 1423 03/18/97 1431 03/18/97 1515 03/18/97 1515 03/18/97 1537 03/18/97 1653 03/18/97 1731 03/18/97 1731 03/18/97 1731 03/18/97 1731 03/18/97 1731 03/18/97 1734



#### QUALITY ASSURANCE NETHODS

#### REFERENCES AND NOTES

Report Date: 03/19/97

- EPA 600/4-79-020, Methods for Chemical Analysis of Water and (1) Wastes, March 1983
- EPA SW-846. Test Methods for Evaluating Solid Waste, Third (2) Edition, November 1990 and July 1992 Update
- Standard Methods for the Examination of Water and Wastewater, (3) 18th Edition, 1995
- (4)
- Federal Register, July 1, 1992 (40 CFR Part 136) EPA 600/2-78-054, Field and Laboratory Methods Applicable to (5) Overburdens and Minesoils
- Methods of Soil Analysis, American Society of Agronomy, (6)
- Agronomy No. 9, 1965 ASTM, Section 11 Water and Environmental Technology, (7) Volume 11.01 Water (1), 1991
- (8) ASTM, Section 5, Petroleum Products, Lubricants, and Fossil Fuels, Volume 05.05, Gaseous Fuels, Coai, and Coke

#### Comments:

Data in the QA report may differ from final results due to digestion and/or dilution of sample into analytical ranges. The "Time Analyzed" in the QA report refers to the start time of the analytical batch which may not reflect the actual time of each analysis. The "Date Analyzed" is the actual date of analysis. Results for soil and sludge samples are reported on a wet weight basis (i.e. not corrected for percent moisture) unless otherwise indicated.

NC = Not Calculable Due to Value(s) lower than the Detection Limit.

Quality Control acceptance criteria are method dependent.

All data reported on sample "as received" unless noted.

Sample IDs with a "-00" at the end indicate a blank spike or blank spike duplicate associated with the numbered sample.

### BLANK QC SAMPLE IDENTIFICATION

Method Blank

Initial Calibration Blank 1 CR

CCB Continuing Calibration Blank

#### SPIKE QC SAMPLE IDENTIFICATION

MS Method (Matrix) Blank

Method (Matrix) Spike Duplicate MSD

PDS Post Digestion Spike

SB Spiked Blank

SRD Spiked Blank Duplicate

#### REFERENCE STANDARD QC SAMPLE IDENTIFICATION

LCS Laboratory Control Standard

Reference Standard RS

ICV Initial Calibration Verification Standard CCV Continuing Calibration Verification Standard

ISA/ISB ICP Interface Check Sample

ICL Initial Calibration/Laboratory Control Sample

DSC Distilled Standard Check



#### QUALITY ASSURANCE NETHODS

#### REFERENCES AND NOTES

Report Date: 03/19/97

#### DUPLICATE QC SAMPLE IDENTIFICATION

MD	Method (Matrix) Duplicate
ED	Extraction Duplicate
DD	Digestion Duplicate
PDD	Post Digestion Duplicate

Analyses performed by a subcontract laboratory are indicated on the analytical and/or quality control reports under "technician" using the following codes:

SUBCONTRACT LABORATORY	CODE
Core Laboratories - Anaheim, CA	* an
Core Laboratories - Aurora, CO	* au
Core Laboratories - Casper, WY	* ca
Core Laboratories - Edison, NJ	* ed
Core Laboratories - Houston (Env.), TX	* he
Core Laboratories - Houston (Pet.), TX	* hp
Core Laboratories - Indianapolis, IN	* in
Core Laboratories - Lake Charles, LA	* lc
Core Laboratories - Long Beach, CA	* lb
Core Laboratories - Tampa, FL	* tp
Core Laboratories - Valparaiso, IN	* vp
Other Subcontract Laboratories	* xx
Pollution Control Srv San Antonio, TX	* pc
Client Provided data	* ср

#### EXPLANATION OF DATA FLAGS

- B This flag is used to indicate that an analyte is present in the method blank as well as in the sample. It indicates that the client should consider this when evaluating the results.
- D This flag indicates that surrogates were diluted out of calibration range and cannot be quantified.
- E Indicates that a sample result is an estimate because the concentration exceeded the calibration range of the instrument.
- I Used to indicate matrix interference.
- J Indicates that a value is an estimate. It is used when a compound is determined to be present based on the mass spectral data, but at a concentration less than the practical quantitation limit of the method. This flag is also used when estimating the concentration of a tentatively identified compound.
- X Indicates that a surrogatge recovery is outside the specified quality control limits.
- Y Used to identify a spike or spike duplicate recovery and spike duplicate is outside the specified quality control limits.
- Indicates a relative percent difference for a duplicate analysis is outside the specified quality control limits.
- Used to indicate that a standard is outside specified quality control limits.



# ANALYTICAL REPORT

JOB NUMBER: 970777

Prepared For:

City of Laredo P. O. Box 2950 Laredo, TX 78044

Attention: Adrian Montemayor

Date: 03/19/97

Signature

Name: Chip Meador

Title: Regional Manager

Date

1733 N. Padre Island Drive Corpus Christi, TX 78403

PHONE: 512/289-2673 FAX: 512/289-2471

3/19/97

any oil (gas, coal or other mineral incomer), and connection with which such report, sused or released only any reason whatsoever. This report shall not be reproduced, in whole or in their whole in which the written approve of Core Laboratoris.



SAMPLE INFORMATION

Date: 03/19/97

Job Number.: 970777

Customer ..: City of Laredo

Attn....: Adrian Montemayor

Project Number.....: 99999995 Customer Project ID...:

Project Description...: Walk in Projects

	Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
	970777-1	AQ51	Water	03/10/97	09:45	03/13/97	11:00
1.	970777-2	AQ23	Water	03/10/97	10:03	03/13/97	11:00
	970777-3	AQ24	Water	03/10/97	12:45	03/13/97	11:00
	970777-4	AQ22	Water	03/10/97	22:30	03/13/97	11:00
	970777-5	AQ50	Water	03/10/97	15:00	03/13/97	11:00
	i						
	Į.						
			}		}		
.							
٦							
			1				
	:						
	1						
	1						
	!						
							[
-1							}



LABORATORY TEST RESULTS

Job Number: 970777

Date: 03/19/97

CUSTOMER: City of Laredo

PROJECT:

ATTN: Adrian Montenayor

Customer Sample 1D: AQ51
Date Sampled....: 03/10/97
Time Sampled....: 09:45
Sample Matrix...: Water

Laboratory Sample ID: 970777-1
Date Received.....: 03/13/97
Time Received.....: 11:00

TEST NETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
EPA 200.7	Calcium (Ca), Total	5	1	mg/L	03/18/97	gcc
EPA 200.7	Magnesium (Mg), Total	1.03	0.05	mg/L	03/18/97	gcc
EPA 200.7	Potassium (K), Total	1	1	mg/L	03/18/97	gcc
EPA 200.7	Sodium (Na), Total	599	1	mg/L	03/18/97	gcc
EPA 200.7	Acid Digestion, Total Metals	Complete			03/14/97	dina
. •					1	
. ·'						
					<u>:</u>	
				i		}
		:		i		
				ļ. !		
1						
ı'						



LABORATORY TEST RESULTS

Job Number: 970777

Date: 03/19/97

CUSTOMER: City of Laredo

PROJECT:

ATTN: Adrian Montemayor

Customer Sample 1D: AQ23
Date Sampled.....: 03/10/97
Time Sampled.....: 10:03
Sample Matrix....: Water

Laboratory Sample ID: 970777-2 Date Received.....: 03/13/97

Time Received.....: 11:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TEC
EPA 200.7	Calcium (Ca), Total	7	1	mg/L	03/18/97	gcc
EPA 200.7	Magnesium (Mg), Total	1.38	0.05	mg/L	03/18/97	gcc
EPA 200.7	Potassium (K), Total	2	1	mg/L	03/18/97	gcc
EPA 200.7	Sodium (Na), Total	581	1	mg/L	03/18/97	gcc
EPA 200.7	Acid Digestion, Total Metals	Complete			03/14/97	dnw
						l
				į		
	1					
	·					
					-	
			ļ Ē	ł		
	1			]		



Job Number: 970777

### **CORE LABORATORIES**

LABORATORY

TEST RESULTS

Date: 03/19/97

CUSTOMER: City of Laredo

PROJECT:

ATTN: Adrian Montemayor

Customer Sample ID: A924 Date Sampled....: 03/10/97 Time Sampled....: 12:45 Sample Matrix...: Water Laboratory Sample ID: 970777-3 Date Received.....: 03/13/97 Time Received.....: 11:00

TEST NETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
EPA 200.7	Calcium (Ca), Total	6	1	mg/1.	03/18/97	acc
EPA 200.7	Magnesium (Mg), Total	1.12	0.05	mg/L	03/18/97	gcc
EPA 200.7	Potassium (K), Total	2	1	mg/L	03/18/97	gcc
EPA 200.7	Sodium (Na), Total	553	1	mg/L	03/18/97	acc
EPA 200.7	Acid Digestion, Total Metals	Complete			03/14/97	dnw
				,		
· ·						
				·		



Job Number: 970777

### **CORE LABORATORIES**

LABORATORY

TEST RESULTS

Date: 03/19/97

CUSTOMER: City of Laredo

PROJECT:

ATTN: Adrian Montemayor

Customer Sample ID: AQ22 Date Sampled....: 03/10/97 Time Sampled....: 22:30 Sample Matrix...: Water

Laboratory Sample ID: 970777-4 Date Received....: 03/13/97 Time Received.....: 11:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
EPA 200.7	Calcium (Ca), Total	10	1	mg/L	03/18/97	gcc
EPA 200.7	Magnesium (Mg), Total	2.00	0.05	mg/L	03/18/97	gcc
EPA 200.7	Potassium (K), Total	2	1	mg/L	03/18/97	gcc
EPA 200.7	Sodium (Na), Total	557	1	mg/L	03/18/97	gcc
EPA 200.7	Acid Digestion, Total Metals	Complete			03/14/97	dnw
•						
	·					
				,		
	·					
					ļ	
	,					
	·					
ا						



Job Number: 970777

# **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 03/19/97

CUSTOMER: City of Laredo

PROJECT:

ATTM: Adrian Montemayor

Customer Sample ID: AQ50
Date Sampled.....: 03/10/97
Time Sampled.....: 15:00
Sample Matrix....: Water

Laboratory Sample 1D: 970777-5
Date Received.....: 03/13/97
Time Received.....: 11:00

ST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	Ť
PA 200.7	Calcium (Ca), Total	6	1	mg/L	03/18/97	او
A 200.7	Magnesium (Mg), Total	1.00	0.05	mg/L	03/18/97	9
A 200.7	Potessium (K), Total	2	1	mg/L	03/18/97	9
PA 200.7	Sodium (Ma), Total	514	1	mg/L	03/18/97	ا,
A 200.7	Acid Digestion, Total Metals	Complete			03/14/97	ď
				!		
						l
					[	İ
			<u> </u>		}	
		}				
						1
					ļ	Ì
						۱
					1	
					1	
						Ì
		ł				l
	}					
		]				
			}			

PROJECT: ASR

SAMPLE ID

AQ-22

LAB ID

AQ-22

DATE SAMPLED

03/08/97

DATE RECEIVED

03/10/97

TIME SAMPLED

22:30

TIME RECEIVED

TEST METHOD:	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	
SM 2510 B	Conductivity	2830	1000	μS/cm	03/10/97	hm
SM 2540 C	Total Dissolved Solids	1660	20	mg/L	03/14/97	hm
SM 2540 H+B	pН	8.6		S.U.	03/10/97	hm
SM 2320 B	Total Alkalinity as CaCO3	215	10	mg/L	03/10/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	16	10	mg/L	03/10/97	hm
	Carbonate as CaCO3	19	Calculated	mg/l	03/24/97	am
	Bicarbonates as CaCO3	223	Calculated	mg/L	03/24/97	am
SM 2340 B	Hardness as CaCO3	40	20	mg/L	03/10/97	hm
EPA 300.0	Bromide	1.46	0.05	mg/L	03/14/97	jcm
EPA 300.0	Nitrate	ND	0.05	mg/L	03/14/97	jcm
EPA 300.0	Sulfate	491	0.08	mg/L	03/24/97	jcm
EPA 300.0	Chlorides	429	0.08	mg/L	03/24/97	jcm
EPA 300.0	Flouride	ND	0.01	mg/L	03/14/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	03/14/97	jcm
EPA 300.0	o-Phosphate	ND	0.003	mg/L	03/14/97	jcm
		1		ĺ		[
				1		1
		İ		1	ł	}
				1		
		1				

PROJECT: ASR

SAMPLE ID

AQ-23

LAB ID

AQ-23

DATE SAMPLED

03/09/97

DATE RECEIVED

03/10/97

TIME SAMPLED

10:03

TIME RECEIVED

TEST METHOD	PARAMETER	SAMPLE RESULT	HERONING IN	UNIE:		TECH
SM 2510 B	Conductivity	2800	1000	μS/cm	03/10/97	hm
SM 2540 C	Total Dissolved Solids	1692	20	mg/L	03/14/97	hm
SM 2540 H+B	pН	8.6		S.U.	03/10/97	hm
SM 2320 B	Total Alkalinity as CaCO3	220	10	mg/L	03/10/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	15	10	mg/L	03/10/97	hm
	Carbonate as CaCO3	18	Calculated	mg/l	03/24/97	am
		am				
SM 2340 B	Hardness as CaCO3	24	20	mg/L	03/10/97	hm
EPA 300.0	Bromide	1.44	0.05	mg/L	03/14/97	jcm
EPA 300.0	Nitrate	ND	0.05	mg/L	03/14/97	jcm
EPA 300.0	Sulfate	484	0.08	mg/L	03/24/97	jcm
EPA 300.0	Chlorides	425	0.08	mg/L	03/24/97	jcm
EPA 300.0	Flouride	ND	0.01	mg/L	03/14/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	03/14/97	jcm
EPA 300.0	o-Phosphate	ND	0.003	mg/L	03/14/97	jcm
			1			
				1		

PROJECT: ASR

SAMPLE ID

AQ-24

03/09/97

DATE SAMPLED
TIME SAMPLED

12:45

LAB ID

AQ-24

DATE RECEIVED

03/10/97

TIME RECEIVED

TEST METHOD:	PARAMETER	SAMPLE RESULTE	REPORTING LIMIT	UNITS	DATE :	atieii
SM 2510 B	Conductivity	2800	1000	μS/cm	03/10/97	hm
SM 2540 C	Total Dissolved Solids	1670	20	mg/L	03/14/97	hm
SM 2540 H+B	pH	8.8		S.U.	03/10/97	hm
SM 2320 B	Total Alkalinity as CaCO3	219	10	mg/L	03/10/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	14	10	mg/L	03/10/ <del>9</del> 7	hm
	Carbonate as CaCO3	17	Calculated	mg/l	03/24/97	am
	Bicarbonates as CaCO3	233	Calculated	mg/L	03/24/97	am
SM 2340 B	Hardness as CaCO3	32	20	mg/L	03/10/97	hm
EPA 300.0	Bromide	1.46	0.05	mg/L	03/14/97	jcm
EPA 300.0	Nitrate	ND	0.05	mg/L	03/14/97	jcm
EPA 300.0	Sulfate	484	0.08	mg/L	03/24/97	jcm
EPA 300.0	Chlorides	425	0.08	mg/L	03/24/97	jcm
EPA 300.0	Flouride	ND	0.01	mg/L	03/14/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	03/14/97	jcm
EPA 300.0	o-Phosphate	ND	0.003	mg/L	03/14/97	jcm
		:				1
·				ı.		

PROJECT: ASR

SAMPLE ID

AQ-50

LAB ID

AQ-50

DATE SAMPLED
TIME SAMPLED

03/09/97 15:00 DATE RECEIVED

03/10/97

TIME RECEIVED

ISH HEILOD	PARAMETER	SAMPLE RESULT	REPORTING HALL	WYES		
SM 2510 B	Conductivity	2820	1000	μS/cm	03/10/97	hm
SM 2540 C	Total Dissolved Solids	1674	20	mg/L	03/14/97	hm
SM 2540 H+B	pН	8.7		S.U.	03/10/97	hm
SM 2320 B	Total Alkalinity as CaCO3	219	10	mg/L	03/10/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	14	10	mg/L	03/10/97	hm
	Carbonate as CaCO3	17	Calculated	mg/l	03/24/97	am
	Bicarbonates as CaCO3	233	Calculated	mg/L	03/24/97	am
SM 2340 B	Hardness as CaCO3	32	20	mg/L	03/10/97	hm
EPA 300.0	Bromide	1.48	0.05	mg/L	03/14/97	jcm
EPA 300.0	Nitrate	ND	0.05	mg/L	03/14/97	jcm
EPA 300.0	Sulfate	483	0.08	mg/L	03/24/97	jcm
EPA 300.0	Chlorides	425	0.08	mg/L	03/24/97	jcm
EPA 300.0	Flouride	ND	0.01	mg/L	03/14/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	03/14/97	jcm
EPA 300.0	o-Phosphate	ND	0.003	mg/L	03/14/97	jcm
						ŀ
					1	
						ł
						1
					1	
			1	-		
		1				L

PROJECT: ASR

SAMPLE ID

AQ-51

LAB ID

AQ-51

DATE SAMPLED

03/10/97

DATE RECEIVED

03/10/97

TIME SAMPLED

09:45

TIME RECEIVED

			THE RECEIVED			
TEST METHOD	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SM 2510 B	Conductivity	2820	1000	μS/cm	03/10/97	hm
SM 2540 C	Total Dissolved Solids	1670	20	mg/L	03/14/97	hm
SM 2540 H+B	рН	8.8		S.U.	03/10/97	hm
SM 2320 B	Total Alkalinity as CaCO3	218	10	mg/L	03/10/97	hm
SM 2320 B	Phenolphthalein Alk as CaCO3	13	10	mg/L	03/10/97	hm
	Carbonate as CaCO3	16	Calculated	mg/l	03/24/97	am
	Bicarbonates as CaCO3	234	Calculated	mg/L	03/24/97	am
SM 2340 B	Hardness as CaCO3	22	20	mg/L	03/10/97	hm
EPA 300.0	Bromide	1.46	0.05	mg/L	03/14/97	jcm
EPA 300.0	Nitrate	ND	0.05	mg/L	03/14/97	jcm
EPA 300.0	Sulfate	476	0.08	mg/L	03/24/97	jcm
EPA 300.0	Chlorides	418	0.08	mg/L	03/24/97	jcm
EPA 300.0	Flouride	ND	0.01	mg/L	03/14/97	jcm
EPA 300.0	Nitrite	ND	0.004	mg/L	03/14/97	jcm
EPA 300.0	o-Phosphate	ND	0.003	mg/L	03/14/97	jcm
1					j	
:						
		<u>                                     </u>	<u> </u>	<u> </u>	<u></u>	i

### QUALITY CONTROL REPORT

PROJECT: ASR

### CONDUCTIVITY

QC METHOD	REAGENT	TRUE VALUE	QC RESULT	UNITS	% Deviation	
CAL. CHECK	Standard, KCL	1413	1412	uS/cm	0.4	

### TOTAL DISSOLVED SOLIDS

QC METHOD	REAGENT	CONSTITUENT	ORIG. **** VALUE	TRUE VALUE	QC RESULT		Several and	
DUPLICATE	AQ-51	TDS	1670		1698	mg/L	0.83	

### ION CHROMATOGRAPHY- CHLORIDE

QCMETHOD:	REAGENT	CONSTITUENT	ORIG. VALUE	TRUE VALUE	QC Result	UNITS	% Deviation	St.	
BLANK	Di water			0	0	mg/L			
DUPLICATE	AQ-22		429.273		428.948	mg/L	0.038		]
LCS	Standard	Chloride		100	103	mg/L		103	
SPIKE	J2-18		66.98	75.00	143.70	mg/L		98.8	
SPIKE-DUP	J2-18		66.98	75.00	143.60	mg/L	0.034		
LCS	Standard	Chloride		100	99.819	mg/L	ļ	99.8	
BLANK	DI water			0	0	mg/L			

### ION CHROMATOGRAPHY - SULFATE

QC METHOD		CONSTITUENT	ORIG: VALUE	TRUE VALUE	OC RESULT	UNITS	% Deviation		
BLANK	DI water			0	0	mg/L			
DUPLICATE	AQ-22		490.964		491.419	mg/L	0.046		
LCS	Standard	Sulfate		200	205.539	mg/L		102.8	1
SPIKE	J2-18		99.06	150.0	255.863	mg/L		104.5	ŀ
SPIKE-DUP	J2-18		99.06	150.0	253.250	mg/L	0.51		]
LCS	Standard	Sulfate		200	198.194	mg/L		99.1	
BLANK	DI water			0	0	mg/L			

### ION CHROMATOGRAPHY - BROMIDE

QCMETHOD	REAGENT	CONSTITUENT	ORIG. VALUE	TRUE: VALUE	QC RESULT	UNITS	% Deviation	% Recovery	
BLANK	DI water			0	0	mg/L			
DUPLICATE	J2-21		0.175		0.172	mg/L	0.86		
LCS	Standard	Bromide			0.837	mg/L		83.7	
SPIKE	J2-21		0.14	0.2	0.311	mg/L		85.5	
SPIKE-DUP	J2-21		0.14	0.2	0.291	mg/L	3.3		
LCS	Standard	Bromide		5	4.502	mg/L		90	
BLANK	DI water			0	0	mg/L			
				L					

### ION CHROMATOGRAPHY - NITRATE

QC METHOD	REAGENT	CONSTITUENT	ORIG. VALUE	TRUE VALUE	QC RESULT	UNITS	% Deviation	% Recovery	
BLANK	DI water			0	0	mg/L			
DUPLICATE	J2-21		3.52		3.543	mg/L	0.32		
LCS	Standard	Nitrate		1	0.835	mg/L_		83.5	
SPIKE	J2-21		2.816	0.2	3.010	mg/L		97.0	
SPIKE-DUP	J2-21		2.816	0.2	2.969	mg/L	0.68		
LCS	Standard	Nitrate		5	4.725	mg/L		94.5	
BLANK	DI water			0	0	mg/L			

### ION CHROMATOGRAPHY - NITRITE

QC METHOD	REAGENT	CONSTITUENT	ORIG. VALUE	TRUE VALUE	QC RESULT	UNITS	% Deviation	% Recovery	
BLANK	DI water			0	0	mg/L			
DUPLICATE	J2-21		0		0	mg/L	0		
LCS	Standard	Nitrite		Ì	0.829	mg/L		82.9	]
SPIKE	J2-21		0	0	0	mg/L		0	<u> </u>
SPIKE-DUP	J2-21		0	0	0	mg/L		0	
LCS	Standard	Nitrite		5	4.492	mg/L		89.8	
BLANK	DI water			0	0	mg/L			

### ION CHROMATOGRAPHY - 0-PHOSPHATE

OC METHOD	REAGENT	CONSTITUENTS	ORIG.	TRUE VALUE	OC RESULT	ENITS.	Sevaior		
BLANK	DI water			0	0	mg/L			
DUPLICATE	J2-21		0		0	mg/L	0		
LCS	Standard	Phosphate			0.850	mg/L		85	
SPIKE	J2-21			\ }		mg/L			
SPIKE-DUP	J2-21					mg/L			
LCS	Standard	Phosphate		5	4.753	mg/L		95	1
BLANK	DI water			0	0	mg/L			

CITY OF LAREDO, WATER UTILITIES DEPARTMENT WATER POLLUTION CONTROL, LABORATORY SERVICES REPORT DATE: 4/17/97

> **PROJECT: ASR** ATTENTION: PETER VAN NOORT

Sample Identification AQ-52 4/ 9/97 Sample Date

11:40

Sample Time Sample Location TW-3

Sampler **CHRISTIAN**  Laboratory Identification AQ52

Date Received 4/11/97 Time Received 13:15

Sample Condition No Color, HNO3?

Chain Of Custody No. 1589

TEST METHOD	PARAMETER	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	тесн
SM 4500 H+B	pН	8.70	0.00	SU	4/11/97	HM
SM 2320 B	Total Alkalinity	298.00	10.00	mg/L	4/11/97	HM
SM 2320 B	Phen. Alkalinity	19.00	10.00	mg/L	4/11/97	HM
SM 2340 C	Hardness	40.00	20.00	mg/L	4/11/97	HM.
SM 3500 Ca D	Calcium, CaCO3	9.60	20.00	mg/L	4/11/97	HM
Calculated	Magnesium, CaCO3	3.89	0.00	mg/L	4/11/97	HM
SM 2510 B	Spec. Conductivity	2,390.00	0.00	uS/cm	4/11/97	HM
Calculated	Carbonate Ion	22.80				
Calculated	Bicarbonate Ion	317.00				
SM 2130 B	Turbidity	20.80	0.00	NTU	4/11/97	HM
SM 2540 C	Total Dissolved Sol.	1,470.00	20.00	mg/L	4/14/97	PA
EPA 300.0	Bromides	1.06	0.50	mg/L	4/11/97	JCM
EPA 300.0	Chlorides	317.00	1.00	mg/L	4/14/97	JCM
EPA 300.0	Nitrate-Nitrogen	0.00	0.05	mg/L	4/11/97	JCM
1 300.0	Nitrite-Nitrogen	0.00	0.05	mg/L	4/11/97	JCM
EPA 300.0	o-Phosphate	0.00	0.01	mg/L	4/11/97	JCM
EPA 300,0	Sulfate	438.00	1.00	mg/L	4/14/97	JCM

Reviewed

Adrian Montemayor, WP Supt.

CITY OF LAREDO, WATER UTILITIES DEPARTMENT WATER POLLUTION CONTROL, LABORATORY SERVICES REPORT DATE: 4/17/97

> PROJECT: **ASR** ATTENTION: PETER VAN NOORT

Sample Identification AQ53 4/11/97 Sample Date

Sample Time

10:51

TW-3, END

Sample Location Sampler **CHRISTIAN**  Laboratory Identification AQ53

Date Received 4/11/97 Time Received 1315 Sample Condition PASS

Chain Of Custody No.

	-	SAMPLE	REPORTING			
TEST METHOD	PARAMETER	RESULT	LIMIT	UNITS	DATE	TECH
SM 4500 H+B	pН	8.50	0.00	SU	4/11/97	HM
SM 2320 B	Total Alkalinity	302.00	10.00	mg/L	4/11/97	HM
SM 2320 B	Phen. Alkalinity	20.00	10.00	mg/L	4/11/97	HM
SM 2340 C	Hardness	18.00	20.00	mg/L	4/11/97	HM
SM 3500 Ca D	Calcium, CaCO3	4.00	20.00	mg/L	4/11/97	HM
Calculated	Magnesium, CaCO3	1.90	0.00	mg/L	4/11/97	HM
SM 2510 B	Spec. Conductivity	2,060.00	0.00	uS/cm	4/11/97	HM
Calculated	Carbonate Ion	24.00				
Calculated	Bicarbonate Ion	319.00				
SM 2130 B	Turbidity	8.68	0.00	NTU	4/11/97	HM
SM 2540 C	Total Dissolved Sol.	1,266.00	20.00	mg/L	4/14/97	PA
EPA 300.0	Bromides	0.27	0.50	mg/L	4/11/97	JCM
EPA 300.0	Chlorides	259.00	1.00	mg/L	4/14/97	JCM
EPA 300.0	Nitrate-Nitrogen	0.00	0.05	mg/L	4/11/97	<b>JCM</b>
F 300.0	Nitrite-Nitrogen	0.00	0.05	mg/L	4/11/97	JCM
EPA 300.0	o-Phosphate	0.00	0.01	mg/L	4/11/97	JCM
EPA 300.0	Sulfate	343.00	1.00	mg/L	4/14/97	JCM

Reviewed

Adrian Montemayor, WPC Supt.

Test Method	Parameter	QC Type	Lab ID	QC Result	QC Result	True Value	Original Value	% Recovery	% Deviation	Date
EPA 300.0	CHLRIDE	мв	DI	0.0000				ERR	ERR	04/14/97
EPA 300.0	CHERIDE	LCS	CAL#1	46.5160		50.00		93.0	LKK	04/14/97
		DUP	AQ52	315.2920	316.6150	50.00		ERR	0.2094	04/14/97
		MS	970414-J2	129.2690	310.0130	50.00	79.7370	99.1	0.2084	04/14/97
		MSD	970414-J2 970414-J2	129.2090	129.2690	30.00	18.1310	ERR	0.1018	04/14/97
	ł	LCS	970414-32 CAL#2	98.1540	129.2090	100.00		98.2		04/14/97
			l.	0.0000		100.00		ERR	ERR	04/14/97
EPA 300.0	SULFATE	BLK MB	DI DI	0.0000				ERR	ERR	04/14/97
EPA 300.0	SOLFAIE		CAL#1	89.6360		100.00		89.6	ERR	04/14/97
		LCS	1	l i	420.0070	100.00		i .	0.2970	
		DUP	AQ52	435.4730	438.0670	100.00	100 0770	ERR 98.1	100.0000	04/14/97 04/14/97
		MS	970414-J2	206.9700	206.9700	100.00	108.8770	ERR	0.0696	04/14/97
		MSD	970414-J2 CAL #2	206.6820 194.3910	200.9700	200.00		97.2	1	04/14/97
		LCS	DI	!!!		200.00		ERR	ERR	04/14/97
FD4 200.0	NATIONIE .	BLK		0.0000 0.0000				ERR	ERR	04/11/97
EPA 300.0	NITRITE	MB	DI CAL#3	9.8330		10.00		98.3	ERIK	04/11/97
		LCS DUP	AQ52	0.0000	0.0000	10.00		ERR	ERR	04/11/97
<b>\</b>	ļ.	1	1	1 1	0.0000	2.50	0.0000	105.5	1 i	04/11/97
		MS	J2-11 J2-11	2.6370 2.4040	2.6370	2.50	0.0000	ERR	4.6221	04/11/97
		MSD LCS	CAL #2	4.5010	2.0370	5.00		90.0	4.0221	04/11/97
		1	Di	0.0000		5.00		ERR	ERR	04/11/97
EDA 200.0	PPOMPE	BLK	Di	0.0000			i	ERR	ERR	04/11/97
EPA 300.0	BROMIDE	MB				10.00		95.1	ERR	04/11/97
1		LCS	CAL#3 AQ52	9.5080 1.0350	1.0570	10.00		ERR	1.0516	04/11/97
	1	ľ	1	1 1	1.0570	2.50	0.2090	88.6	1,0310	
1	1	MS	J2-11	2.4240	0.4040	2.50	0.2090	ERR	0.6436	04/11/97
		MSD	J2-11	2.3930	2.4240	5.00		92.8	0.0430	04/11/97 04/11/97
		LCS	CAL#2	4.6420 0.0000		5.00		ERR	ERR	04/11/97
ED4 400.0		BLK	DI	! !	:			ERR	ERR	
EPA 300.0	NITRATE	MB	Di	0.0000		40.00		98.0	EKK	04/11/97 04/11/97
		LCS	CAL#3	9.8010	0.0000	10.00		ERR	ERR	
	1	DUP	AQ52	0.0000 3.7460	0.0000	2.50	2.7920	38.2	1	04/11/97 04/11/97
		MS	J2-11	i l	2 7480	2.50	2.1920	ERR	0.1069	04/11/97
		MSD	J2-11	3.7380	3.7460	5.00		92.2	0.1009	04/11/97
]		LCS	CAL#3	4.6080		5.00		ERR	ERR	04/11/97
EPA 300.0	0-PHOSPHATE	BLK	DI	0.0000				ERR	ERR	
E-PA 300.0	U-FRUSPRATE	MB	DI	0.0000		10.00	ľ		=	04/11/97
		LCS	CAL#3	9.9360	0.0000	10.00		99.4 ERR	ERR	04/11/97
1		DUP	AQ52	0.0000	0.0000	0.50		1	CRR	04/11/97
		MS	J2-11	2.3720	2 2720	2.50	0.0000	94.9 ERR	0.2942	04/11/97 04/11/97
		MSD	J2-11	2.3860	2.3720	£ 00			0.2942	
		LCS	CAL#3	4.8130		5.00		96.3	EDC	04/11/97
	1	BLK	DI	0.0000	ļ			ERR	ERR	04/11/97



## ANALYTICAL REPORT

JOB NUMBER: 971134

Prepared For:

City of Laredo P. O. Box 2950 Laredo, TX 78044

Attention: Adrian Montemayor

Date: 04/18/97

Signature

Name: Charles Sassine

Title: Laboratory Supervisor

42197

Date

1733 N. Padre Island Drive Corpus Christi, TX 78403

PHONE: 512/289-2673 FAX: 512/289-2471



SAMPLE INFORMATION Date: 04/18/97

Job Number.: 971134

Customer ..: City of Laredo Attn..... Adrian Montemayor Project Number....: 99999995 Customer Project ID...: ASR

Project Description...: Walk in Projects

Laboratory Sample ID	Customer Sample ID	Sample Hatrix	Date Sampled	Time Sampled	Date Received	Time Received
971134-1	AQ 53	Water	04/11/97	10:51	04/16/97	08:30
971134-2	AQ 52	Water	04/09/97	11:40	04/16/97	08:30
			}			
					!	
<u>l</u>						
					:	
					·	
	·					
				ļ		
				!		
					!	
:						



LABORATORY TEST RESULTS

Job Number: 971134

Date: 04/18/97

CUSTOMER: City of Laredo

PROJECT: ASR

ATTM: Adrian Montessyor

Customer Sample ID: AQ 53
Date Sampled.....: 04/11/97
Time Sampled.....: 10:51 Sample Matrix....: Water

Laboratory Sample ID: 971134-1 Date Received.....: 04/16/97 Time Received.....: 08:30

TEST NETHOD	PARAMETER/TEST DESCRIPTION	SAIPLE RESELT	REPORTING LIMIT	LINTTS	DATE	TECH
EPA 200.7	Calcium (Ca), Total	3	1	mg/L	04/17/97	) minner
EPA 200.7	Magnesium (Mg), Total	0.94	0.05	mg/L	04/17/97	1
EPA 200.7	Potassium (K), Total	1	1	mg/L	04/17/97	gcc
EPA 200.7	Sodium (Na), Total	422	1	mg/L	04/17/97	gcc
EPA 200.7	Acid Digestion, Total Metals	Complete			04/16/97	dru
T			ļ	<u> </u>		
						ļ
						1



LABORATORY TEST RESULTS

Job Number: 971134

Date: 04/18/97

CUSTOMER: City of Laredo

PROJECT: ASR

ATTN: Adrien Montemayor

Customer Sample ID: AQ 52
Date Sampled.....: 04/09/97
Time Sampled.....: 11:40
Sample Matrix....: Water

Laboratory Sample ID: 971134-2 Date Received.....: 04/16/97 Time Received.....: 08:30

TEST NETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LINIT	UNITS	DATE	TECH
EPA 200.7	Calcium (Ca), Total	8	1	mg/L	04/17/97	acc
EPA 200.7	Magnesium (Mg), Total	3.88	0.05	mg/L	04/17/97	acc
EPA 200.7	Potassium (K), Total	1	1	mg/L	04/17/97	gcc
EPA 200.7	Sodium (Na), Total	488	1	mg/L	04/17/97	gcc
EPA 200.7	Acid Digestion, Total Metals	Complete			04/16/97	dnw
<b>I</b>		·				
1						
				!		
				l.		
					į	
	·				Í	
		1	}		}	
1						



QUALITY CONTROL RESULTS

Job Number: 971134

Date: 04/18/97

CUSTOMER: City of Laredo

PROJECT: ASR

ATTN: Adrien Montemayor

	CV M0066 1.03077 1.00 103 CV M0061 4.97310 5.00 99	
MOOS1	CV M0061 4.97310 5.00 99	
MODE	CV M0061 4.97310 5.00 99	.1 % REC 04/17/97 09
0.01178		
200.7 0.00771 5 S MS520 1.06894 1.00 106.9 X REC 04/17/97 1 6 M0068 5.06687 5.00 101.3 X REC 04/17/97 1 7 M0068 5.06687 5.00 101.3 X REC 04/17/97 1 8 M0068 5.01746 5.00 100.3 X REC 04/17/97 1 8 M0068 5.01746 5.00 100.3 X REC 04/17/97 1 9 771034-1 2.86969 3.07742 0.20773 ABS Diff. 04/17/97 1 9 770986-13 166.46038 161.36743 3.1 RPD 04/17/97 1 9 770987-13 25.05810 21.52145 6.9 RPD 04/17/97 1 9 770987-13 25.05810 101.7 X REC 04/17/97 1 9 8 0.04517 101.7 X REC 04/17/97 1 9 8 0.04517 101.7 X REC 04/17/97 1 9 8 M5520 1.17225 1.00 117.2 X REC 04/17/97 1 18.82543 11.4 RPD 04/17/97 1 18.82543 11.4 RPD 04/17/97 1 18.82543 11.4 RPD 04/17/97 1 18.82543 11.4 RPD 04/17/97 1 18.82543 11.4 RPD 04/17/97 1 18.82541 11.0 145.44122 2.7 RPD 04/17/97 1 18 S 971101-1 M5520 146.30471 1.00 145.44122 2.7 RPD 04/17/97 1 18 S 971101-1 M5520 146.30471 1.00 145.44122 2.7 RPD 04/17/97 1 18 S 971101-1 M5520 146.30471 1.00 145.44122 86.3 X REC 04/17/97 1 18 S 971101-1 M5520 146.30471 1.00 145.44122 86.3 X REC 04/17/97 1 18 S 971101-1 M5520 146.30471 1.00 145.44122 0.0 RPD 04/17/97 1 18 S 971101-1 M5520 146.30471 1.00 145.44122 0.0 RPD 04/17/97 1 18 S 971101-1 M5520 146.30471 1.00 145.44122 0.0 RPD 04/17/97 1 18 S 97104-1 1 S506.08477 5.00 101.0 X REC 04/17/97 1 18 S 97104-1 M5520 2.21102 2.00 2.21102 110.6 X REC 04/17/97 1 18 S 97104-1 M5520 2.21102 2.00 2.21102 110.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.21102 3.00 99.9 X REC 04/17/97 1 18 S 97104-1 M5520 3.21102 3.00 99.9 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.6 X REC 04/17/97 1 18 S 97104-1 M5520 3.00 100.00 SSSSS 811.0 REC	CB 0.01178	
MSS20	3 200.7 0.00771	04/17/97 10
0.02142 0	cs M3520 1.06894 1.00 106	
0.02142	v M0068 5.06687 5.00 101	.3 % REC 04/17/97 11
971134-1 2.86969 3.07742 0.20775 ABS Diff. 04/17/97 970986-13 166.46038 161.36743 3.1 RPD 04/17/97 8 0.0058 5.08363 5.00 21.52145 6.9 RPD 04/17/97 8 0.00517 0 101.7 X REC 04/17/97 970987-13 106.668 5.08363 5.00 21.52145 6.9 RPD 04/17/97 970987-13 100.088 5.08363 5.00 1101.7 X REC 04/17/97 97135-1 16.79701 18.82543 11.4 RPD 04/17/97 04/17/97 971156-1 3005 -2.38997 11.00 18.82543 11.4 RPD 04/17/97 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 1101.1 X REC 04/17/97 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.0	8 0.02142	04/17/97 11
971134-1	v M0068 5.01746 5.00 100	.3 % REC 04/17/97 13
970986-13	8 0.00961	04/17/97 13
970987-13  23.05810  8 0.04517  8 0.04517  9 0.04517  9 0.04517  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7  101.7	971134-1 2.86969 3.07742 0	.20773 ABS Diff. 04/17/97 13
Mode	970986-13 166.46038 161.36743 3	.1 RPD 04/17/97 13
0.04517	9 <b>7098</b> 7-13 23.05810 21.52145 6	-9 RPD 04/17/97 13
B	V MOD68 5.08363 5.00 101	.7 % REC 04/17/97 14
S	в 0.04517	04/17/97 14
MSS20	3050 0.10846	
971156-1 16.79791 18.82543 11.4 RPD 04/17/97 07/17/97 18.82543 11.4 RPD 04/17/97 07/17/97 18.82543 11.4 RPD 04/17/97 07/97 100-1 16520 146.30471 1.00 145.44122 2.7 RPD 04/17/97 04/17/97 05/971131-1 85520 146.30471 1.00 145.44122 86.3 X REC 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/	s x3520 1.17223 1.00 117	
3005		
0 971101-1 149, 42288 146, 30471 1.00 145, 44122 2.7 RPD 04/17/97 17/97 18/971101-1 M3520 146, 30471 1.00 145, 44122 86.3 X REC 04/17/97 18/971131-1 3506, 08471 3.00 3505, 87744 0.0 RPD 04/17/97 18/97131-1 3506, 08471 3505, 87744 0.0 RPD 04/17/97 18/971084-1 162, 09387 161, 17480 0.6 RPD 04/17/97 18/971084-1 162, 09387 161, 17480 0.6 RPD 04/17/97 18/971084-1 162, 09387 161, 17480 0.6 RPD 04/17/97 18/971084-1 162, 09387 161, 17480 0.6 RPD 04/17/97 18/971084-1 162, 09387 161, 17480 0.6 RPD 04/17/97 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971084-1 18/97870 1.00 100.6 X REC 04/17/97 18/971134-1 0.08073 1.00 100.93888 18/4.6 X REC 04/17/97 18/971134-1 0.08073 1.00 0.93888 18/4.6 X REC 04/17/97 18/971134-1 0.08073 1.00 0.93888 18/4.6 X REC 04/17/97 18/971134-1 0.08073 1.00 0.93888 18/4.6 X REC 04/17/97 18/971134-1 1.00 0.93888 18/4.6 X REC 04/17/97 18/971134-1 1.00 0.93888 18/4.6 X REC 04/17/97 18/971134-1 18/971134-1 18/971134-1 18/971134-1 18/971134-1 18		
\$ 971101-1 M3520 146.30A71 1.00 145.44122 86.3 X REC 04/17/97 W10068 5.16801 5.00 103.4 X REC 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97		
M0068		
04/17/97	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
3010	· · · · · · · · · · · · · · · · · · ·	
971131-1 3506.08471 5.00 101.0 RPD 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 04/17/97 05/18/04-1 04/17/97 04/17/97 05/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1 04/18/04-1		
Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note   Note		.0 PPD 04/17/97 1
971084-1 162.07887 161.17480 0.6 RPD 04/17/97  10 M35208 2.21102 2.00 110.6 X REC 04/17/97  10 M35208 2.21515 2.21102 2.00 2.21102 110.8 X REC 04/17/97  10 M35208 2.21515 2.21102 2.00 2.21102 110.8 X REC 04/17/97  10 M0068 5.17391 5.00 103.5 X REC 04/17/97  10 M0068 5.17391 5.00 103.5 X REC 04/17/97  10 M0068 5.17391 8eporting Limit: 0.02  10 M1068 1.01932 Reporting Limit: 14427 Armitysis (ICAP)  10 Reagent QC Result QC Result True Value Orig. Value Calc. Result Units Date/T  10 M0066 1.01932 1.00 101.9 X REC 04/17/97  11 M0066 0.99880 1.00 99.9 X REC 04/17/97  12 M0066 0.99880 1.00 99.9 X REC 04/17/97  13 O.01162 99.9 X REC 04/17/97  14 CONTROL OF CALC. RESULT True Value Orig. Value Calc. Result Units Date/T  15 M3520 1.00570 1.00 99.9 X REC 04/17/97  16 O.00458 0.00458  17 M0068 4.997870 5.00 99.6 X REC 04/17/97  18 O.01107 0.991134-1 0.84075 0.93858 11.0 RPO 04/17/97  10 O.971134-1 0.84075 0.93858 11.0 RPO 04/17/97  10 O.97154-1 M3520 1.78271 1.00 0.93858 84.4 X REC 04/17/97		
971084-1 162.09387 161.17480 0.6 RPD 04/17/97  M35208 2.21102 2.00 110.6 X REC 04/17/97  M35208 2.21515 2.21102 2.00 2.21102 110.8 X REC 04/17/97  M M0068 5.17391 5.00 103.5 X REC 04/17/97  Betch:	· · · · · · · · · · · · · · · · · · ·	
M35208   2.21102   2.00   110.6   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/17/97   110.8   X REC   04/1		
Name		
MO068   5.17391   5.00   103.5   X REC   04/17/97		
Mode   S.17391   S.00   103.5   X REC   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   04/17/97   05/134-1   0.93858   11.0   0.93858   11.0   0.93858   11.0   0.93858   14.0   0.93858   14.0   0.93858   04/17/97   04/17/97   04/17/97   04/17/97   0.97134-1   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.938588   0.93858   0.93858   0.93858   0.93858   0.93858   0.93858   0.9	· · · · · · · · · · · · · · · · · · ·	
Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Company   Comp		
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	111111	
Lab ID Reagent QC Result True Value Orig. Value Calc. Result Units Date/T  W M0066 1.01932 1.00 101.9 % REC 04/17/97  W M0066 0.99880 1.00 99.9 % REC 04/17/97  W M0061 4.99527 5.00 99.9 % REC 04/17/97  B 0.01162 04/17/97  SS M3520 1.00570 1.00 100.6 % REC 04/17/97  SS M3520 1.00570 1.00 100.6 % REC 04/17/97  SS M0068 5.15342 5.00 103.1 % REC 04/17/97  SS M0068 4.97870 5.00 99.6 % REC 04/17/97  SS M0068 4.97870 5.00 99.6 % REC 04/17/97  SS M0068 4.97870 5.00 99.6 % REC 04/17/97  SS 971134-1 0.84073 0.93858 11.0 RPD 04/17/97	ethod Description:: Hetals Analysis (JCAP) Reporting Limit: 0.05	Analyst got
M0066		Result Units Date/Ti
EV     M0066     0.99880     1.00     99.9     % REC     04/17/97       EV     M0061     4.99527     5.00     99.9     % REC     04/17/97       EB     0.01162     04/17/97     04/17/97       ES     M3520     1.00570     1.00     100.6     % REC     04/17/97       CB     -0.00458     5.00     103.1     % REC     04/17/97       CB     -0.00458     04/17/97     04/17/97       CB     -0.01107     99.6     % REC     04/17/97       CB     -0.01107     0.93858     11.0     RPD     04/17/97       CB     -0.01134-1     0.93858     11.0     RPD     04/17/97       CB     -0.01134-1     0.93858     84.4     % REC     04/17/97		
No   No   No   No   No   No   No   No		
0.01162 04/17/97 0.01543 04/17/97 0.01550 1.00570 1.00 100.6 % REC 04/17/97 0.0068 5.15342 5.00 103.1 % REC 04/17/97 0.0068 0.00458 04/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97 0.0068 05/17/97		
3 200.7 -0.01543 04/17/97 25 M3520 1.00570 1.00 100.6 % REC 04/17/97 26 M0068 5.15342 5.00 103.1 % REC 04/17/97 27 M0068 -0.00458 28 -0.00458 29 M0068 4.97870 5.00 99.6 % REC 04/17/97 28 -0.01107 29 971134-1 0.84073 0.93858 11.0 RPD 04/17/97 29 971134-1 1.00 0.93858 84.4 % REC 04/17/97		04/17/07 1
1.00 100.6	·	04/17/07 1
TV NO068 5.15342 5.00 103.1 % REC 04/17/97 TB -0.00458 TV N0068 4.97870 5.00 99.6 % REC 04/17/97 TB -0.01107 04/17/97 TO 971134-1 0.84073 0.93858 11.0 RPD 04/17/97 TO 971134-1 N3520 1.78271 1.00 0.93858 84.4 % REC 04/17/97		
-0.00458 04/17/97 CV N0068 4.97870 5.00 99.6 % REC 04/17/97 CB -0.01107 04/17/97 C 971134-1 0.84073 0.93858 11.0 RPD 04/17/97 CS 971134-1 N3520 1.78271 1.00 0.93858 84.4 % REC 04/17/97	1,000	
CV     M0068     4.97870     5.00     99.6     % REC     04/17/97       CB     -0.01107     04/17/97       CD     971134-1     0.84073     0.93858     11.0     RPD     04/17/97       CS     971134-1     M3520     1.78271     1.00     0.93858     84.4     % REC     04/17/97	***************************************	
-0.01107 04/17/97 0 971134-1 0.84073 0.93858 11.0 RPD 04/17/97 3 971134-1 N3520 1.78271 1.00 0.93858 84.4 % REC 04/17/97	· · · · · · · · · · · · · · · · · · ·	
0.971134-1 0.84073 0.93858 11.0 RPD 04/17/97 5 971134-1 M3520 1.78271 1.00 0.93858 84.4 % REC 04/17/97		
s 971134-1 M3520 1.78271 1.00 0.93858 84.4 % REC 04/17/97		
A CTORDE ( 17 TO TE 1 1 TO TE TO TE TO TO THE TERM OF THE TOTAL TO THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF THE TOTAL TERM OF		1.9 RPD 04/17/97



QUALITY CONTROL RESULTS

Job Number: 971134

Date: 04/18/97

CUSTOMER: City of Laredo

PROJECT: ASR

ATTN: Adrian Montemayor

С	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	Units	Date/Time
— ·	970987-13	· <del></del>	4.09183			3.87103	5,5	RPD	04/17/97 1343
	970987-13	M3520	5.04196		1.00	3.87103	117.1	% REC	04/17/97 1345
:V		M0068	5.17245		5.00		103.4	% REC	04/17/97 1358
CV		M0068	5.16376		5.00		103.3	% REC	
:В			0.02275						04/17/97 1409
3		3050	0.04982						04/17/97 1412
:s		N3520	1.10935		1.00		110.9	% REC	04/17/97 1414
	971156-1		3.85538			4.41568	13.5		04/17/97 1420
В		3005	-0.49660			*****			04/17/97 1454
	971101-1		12.53684			12.01777	4.2	RPD	04/17/97 1510
	971101-1	N3520	13.14234		1.00	12.01777	112.5		04/17/97 1514
CV	,,,,,,,,,	M0068	5.10858		5.00	,2,0,,,,,	102.2	% REC	
CB			0.00589						04/17/97 1531
B		3010	-0.02494						04/17/97 1544
cs		M3520	0,99695		1.00		99.7	% REC	04/17/97 1552
	971131-1	12720	18.44528			18,46087	0.1	RPD	04/17/97 1557
	971131-1	M3520	19.72155		1.00	18.46087	126.1		04/17/97 1600
-	71 1 1 J 1 - 1	3010	-0.04894		*,00	10140001	10011	# KEC	04/17/97 1610
		M3520	0.89668		1.00		89.7	¥ PEC	04/17/97 1613
CV		M0068	5.13560		5.00		102.7		04/17/97 1649
CB		HUUGS	-0.00064		5.00		102.1	A REL	04/17/97 1656
	971084-1		4.45774			4.42528	0.7	RPD	• •
	7/ 1004-1	M3520B	2.06255		2.00	4.42,20	103.1	% REC	04/17/97 1720
B BD		M3520B	2.09118	2.06255		2.06255	104.6	% REC	04/17/97 1723
טט		MODEUB	2.07110	2.00233	2.00	2.00233	1.4	RPD	04/11/71 112.
CV		M0068	5,10048		5.00		102.0		04/17/97 1728
		MUUOO	0.14158		J.00		102.0	A REL	04/17/97 1737
CB			0.14130						04/11/91 1131

QC	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	Units	Date/Time
ICV		M0067	10.26239		10.00		102.6	% REC	04/17/97 0951
CCV		M0061	4.82620		5.00		96.5	% REC	04/17/97 1013
CCB			-0.26737						04/17/97 1026
LCS		M3520	1.25668		1.00		125.7	% REC	04/17/97 1036
CCV		M0068	4.37577		5.00		87.5	% REC	04/17/97 1112
CCB			0.53152						04/17/97 1121
CCV		M0068	5.24390		5.00		104.9	% REC	04/17/97 1306
CCB			-0.43360						04/17/97 1313
MD	971134-1		1.19241			1.40914	0.21673	ABS Diff.	04/17/97 1318
MS	971134-1	M3520	2.52032		1.00	1.40914	111.1	% REC	04/17/97 1321
MD	970986-13		50.16260			48.84823	2.7	RPD	04/17/97 1331
MD	970987-13		8.92953			7.85907	12.8	RPD	04/17/97 1343
CCV		M0068	5.24390		5.00		104.9	% REC	04/17/97 1401
CCB			-0.47425						04/17/97 1409
MB		3050	-0.40650						04/17/97 1412
`	971156-1		1.05691			0.81300	0.24391	ABS Diff.	04/17/97 1420
	971156-1	M3520	1.76151		1.00	0.81300	94.9	% REC	
7AB		3005	0.05420						04/17/97 1454



QUALITY CONTROL RESULTS

Job Number: 971134

Date: 04/18/97

CUSTOMER: City of Laredo

M3520B

CCB

PROJECT: ASR

ATTN: Admien Monteumer

C	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	Uni ts	Date/Time
 DD 9	71101-1	- <del></del>	15.75880			16.02981	1.7	RPD	04/17/97 1510
	71101-1	M3520	17.27642		1.00	16.02981	124.7	% REC	04/17/97 1514
CV		M0068	4.60704		5.00		92.1	% REC	04/17/97 1525
CB			-0.98916						04/17/97 1531
8		3010	-0.44715						04/17/97 1544
cs		M3520	1.24661		1.00		124.7	% REC	
	71131-1		8.65853			8.52303	1.6	RPD	
3		3010	0.42005						04/17/97 1610
cs		M3520	1.20596		1.00		120.6	% REC	
CV		M0068	5.54200		5.00		110.8	% REC	· · · · · · · · · · · · · · · · · · ·
CB			0.48780						04/17/97 1656
9	771084-1		4.60704			4.62059	0.01355	ABS Diff.	
СВ			-0.62330						04/17/97 1737

	remeter	: Sod	itus (Ne)		Units		g/L		
OC.	Lab ID	Reagent	QC Result	QC Result	True Value	Orig. Value	Calc. Result	Units	Date/Time
ICV		M0067	1.00354		1.00		100.4	% REC	04/17/97 0946
ICV		M0067	0.99559		1.00		99.6	X REC	04/17/97 0951
CCV		M0061	4.94064		5.00		98.8	% REC	04/17/97 1013
CCB			-0.00518						04/17/97 1026
MB		200.7	-0.01395						04/17/97 1034
LCS		M3520	1.16442		1.00		116.4	% REC	04/17/97 1036
CCV		M0068	5.12579		5.00		102.5	% REC	04/17/97 1112
CCB			0.02974						04/17/97 1121
CCV		M0068	4.92070		5.00		98.4	% REC	04/17/97 1306
CCB			0.01665						04/17/97 1313
MD	971134-1		420.52700			421.95758	0.3	RPD	04/17/97 1318
MD	970986-13		8294.01562			8294.58203	0.0	RPD	04/17/97 1331
MS	970986-13	M3520	8295.48632		1.00	8294.58203	90.4	% REC	04/17/97 1334
CCV	,	M0068	5.10276		5.00		102.1	% REC	04/17/97 1358
CCV		M0068	5.21717		5.00		104.3	% REC	04/17/97 1401
CCB			0.30990						04/17/97 1409
MB		3050	0.44281						04/17/97 1412
MD	971156-1		0.56244			0.57502	0.01258	ABS Diff.	04/17/97 1420
MS	971156-1	M3520	1.45462		1.00	0.57502	88.0	% REC	04/17/97 1422
MB		3005	7049.49658						04/17/97 1454
CCV	,	M0068	4.51850		5.00		90.4	% REC	04/17/97 1525
CCE			-0.31925						04/17/97 1531
MB		3010	-0.42588						04/17/97 1544
HD	971131-1		41.37551			41.16996	0.5	RPD	04/17/97 1557
MB		3010	-0.42285						04/17/97 1610
CCV	,	M0068	3.75467		5.00		75.1	% REC	04/17/97 1649
CCE	3		0.38269						04/17/97 1656
HD	971084-1		4755.81738			4752.88476	0.1	RPD	04/17/97 1706
SB		M3520B	2.13557		2.00		106.8	% REC	04/17/97 1720
			4 04000	A 4774		5 4555	00.4	*	A

2.00

2.13557

1.96238

-0.33139

98.1 8.5 % REC 04/17/97 1723

04/17/97 1737

2.13557



#### QUALITY ASSURANCE METHODS

#### REFERENCES AND NOTES

Report Date: 04/18/97

- EPA 600/4-79-020, Methods for Chemical Analysis of Water and Wastes, March 1983
- EPA SW-846, Test Methods for Evaluating Solid Waste, Third (2) Edition, November 1990 and July 1992 Update
- (3) Standard Methods for the Examination of Water and Wastewater, 18th Edition, 1995
- Federal Register, July 1, 1992 (40 CFR Part 136)
- EPA 600/2-78-054, Field and Laboratory Methods Applicable to (5) Overburdens and Minesoils
- Methods of Soil Analysis, American Society of Agronomy, (6) Agronomy No. 9, 1965
  ASTM, Section 11 Water and Environmental Technology,
- (7) Volume 11.01 Water (1), 1991
- ASTM, Section 5, Petroleum Products, Lubricants, and Fossil Fuels, Volume 05.05, Gaseous Fuels, Coal, and Coke (8)

Data in the QA report may differ from final results due to digestion and/or dilution of sample into analytical ranges. The "Time Analyzed" in the QA report refers to the start time of the analytical batch which may not reflect the actual time of each analysis. The "Date Analyzed" is the actual date of analysis. Results for soil and sludge samples are reported on a wet weight basis (i.e. not corrected for percent moisture) unless otherwise indicated.

NC = Not Calculable Due to Value(s) lower than the Detection Limit.

Quality Control acceptance criteria are method dependent.

All data reported on sample "as received" unless noted.

Sample IDs with a "-00" at the end indicate a blank spike or blank spike duplicate associated with the numbered sample.

#### BLANK QC SAMPLE IDENTIFICATION

Method Blank

Initial Calibration Blank ICB

CCB Continuing Calibration Blank

#### SPIKE OC SAMPLE IDENTIFICATION

Method (Matrix) Blank MS

MSD Method (Matrix) Spike Duplicate

PDS Post Digestion Spike

SB Spiked Blank

SBD Spiked Blank Duplicate

#### REFERENCE STANDARD QC SAMPLE IDENTIFICATION

Laboratory Control Standard LCS Reference Standard RS

Initial Calibration Verification Standard ICV

Continuing Calibration Verification Standard ISA/ISB ICP Interface Check Sample

ICL Initial Calibration/Laboratory Control Sample

Distilled Standard Check DSC



#### QUALITY ASSURANCE NETHODS

#### REFERENCES AND NOTES

Report Date: 04/18/97

#### DUPLICATE QC SAMPLE IDENTIFICATION

MD Method (Matrix) Duplicate
ED Extraction Duplicate
DD Digestion Duplicate
PDD Post Digestion Duplicate

Analyses performed by a subcontract laboratory are indicated on the analytical and/or quality control reports under "technician" using the following codes:

SUBCONTRACT LABORATORY	CODE
Core Laboratories - Anaheim, CA	* an
Core Laboratories - Aurora, CO	* au
Core Laboratories - Casper, WY	* ca
Core Laboratories - Edison, NJ	* ed
Core Laboratories - Houston (Env.), TX	* he
Core Laboratories - Houston (Pet.), TX	* hp
Core Laboratories - Indianapolis, IN	* in
Core Laboratories - Lake Charles, LA	* lc
Core Laboratories - Long Beach, CA	* lb
Core Laboratories - Tampe, FL	* tp
Core Laboratories - Valparaiso, IN	* vp
Other Subcontract Laboratories	* xx
Pollution Control Srv San Antonio, TX	* pc
Client Provided data	* ср

#### EXPLANATION OF DATA FLAGS

- 8 This flag is used to indicate that an analyte is present in the method blank as well as in the sample. It indicates that the client should consider this when evaluating the results.
- D This flag indicates that surrogates were diluted out of calibration range and cannot be quantified.
- E Indicates that a sample result is an estimate because the concentration exceeded the calibration range of the instrument.
- I Used to indicate matrix interference.
- J Indicates that a value is an estimate. It is used when a compound is determined to be present based on the mass spectral data, but at a concentration less than the practical quantitation limit of the method. This flag is also used when estimating the concentration of a tentatively identified compound.
- X Indicates that a surrogatge recovery is outside the specified quality control limits.
- Y Used to identify a spike or spike duplicate recovery and spike duplicate is outside the specified quality control limits.
- Indicates a relative percent difference for a duplicate analysis is outside the specified quality control limits.
- Used to indicate that a standard is outside specified quality control limits.

### CITY OF LAREDO, WATER UTILITIES LAB SERVICES

PROJECT: ASR

DATE: Mar. 11,1998

Sample ID: Date Sampled:

TW-2 7/29/97 Lab ID:

TW-2

Time Sampled:

14:25

Date Received: 7/29/97 Time Received: 2:25

SAMPLE

TEST METHOD	PARAMETER	RESULT	UNITS	DATE	TECH
SM 2510B	Conductivity	2550	us/cm	7/31/97	НМ
SM 2540C	Total Dissolved Solids	1440	mg/L	7/31/97	AG
SM 2540 H+B	рН	8.8	S.U.	7/31/97	нм
SM 2320 B	Total Alkalinity	228	mg/L	7/31/97	нм
SM 2320 B	Phenolphthalein Alkalinity	17	mg/L	7/31/97	нм
SM 2320 B	Carbonate	34	mg/L	CALC.	
SM 2320 B	Bicarbonate	225	mg/L	CALC.	
SM 2320 B	Hardness	15	mg/L	7/31/97	НМ
EPA 300.7	Calcium	4	mg/L	7/31/97	нм
EPA 300.0	Magnesium	1	mg/L	7/31/97	нм
EPA 300.0	Bromide	NA	mg/L		
EPA 300.0	Nitrate	NA	mg/L		
EPA 300.0	Sulfate	ERR	mg/L	8/25/97	JCM
EPA 300.0	Chloride	357	mg/L	8/25/97	JCM
EPA 300.0	Flouride	NA	mg/L		
EPA 300.0	Nitrite	NA	mg/L		
EPA 300.0	Ortho-Phosphate	NA	mg/L		
EPA 300.7	Lithium	NA	mg/L		
EPA 300.7	Potassium	NA	mg/L		
AM 4500 MH3	Ammonia Nitrogen	NA	mg/L		

BC

### Clty of Laredo, Water Utilities Department

Laboratory Services

PROJECT:

Aquifer Storage and Recovery

PROJECT ID: ASR DATE:

8/26/97

Sample ID TW2 Sample Date 7/28/97 Sampler 972907-TW Lab ID Sample Time 2045 Sample Condition Good Sample Location Pump Test Disch Dato Received 7/29/97 Time Received 1425 Chain of Custody 0308

		<del></del>		
CONSTITUENT	RESULT	UNITS	DATE COMPLETE	TECH.
pН	8,80	S.U.	7/ <b>31/97</b>	HM
T-Alkai	228.00	mg/L	7/31/97	HM
P-Alkal	17.00	, mg/L	7/31/97	HM
Hardness	15.00 🖌	mg/L	7/31/97	HM
Calcium	4.00	mg/L	7/31/97	HM
Magnesium	1.00	mg/L	7/31/97	HM
Conduct	2,550.00	uS/cm	- 7/31/97 .	. HM
TDS	1;440.00 /	mg/L	8/ 1/97	HM
Bromide	1.43	/ mg/L	8/22/97	JCM
Chloride	357.10	mg/L	8/25/97	JCM
Fluoride	1.00 .	Not Detect	8/22/97	JCM
Nitrate	0.05	Not Detect	8/22/97	JCM
Nitrite	0.05	Not Detect	8/22/97	JCM
O-Phosphat	0.85	∕ mg/L	8/22/97	JCM
Sulfate	2,065.00	Error	8/25/97	JCM
Amm. Nitro	0.27	mg/L	<b>8/</b> 5/97	JCM
TKN	1.00	Not Detect	8/ 7/97	Cor
TOC	1.00	mg/L	8/12/ <del>9</del> 7	Cor
Aluminum	سب 0.05	Not Detcct	8/12/97	Cor
Iron	0.05	Not Detect	8/1 <i>4/</i> 97	Cor
Lithium	0.03	mg/L	8/10/97	Cor
Magnesium	0.49	mg/L	8/14/97	Сот
Manganese	0.05	Not Detect	8/14/97	Cor
Potassium	2.00	mg/L	8/14/97	Cor
SiO2 Total	·12.50	_ mg/L	8/14/97	Cor
Sodium	501.00	mg/L	8/14/97	Cor
•	0.00	_		
	0.00			
	0.00			

Post-it* Fax	VOTE +	671 Date	127/97	Nort
Co.Dept.		Dimas.	one #	
Phone #		Fa	x#	

LABORATORY TEST RÉSULTS Job Mumber: 972363 Date: 08/15/97						
protti tin	MOSTA AS	grammer in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	ATTE: ACTION HONTERBYOT			
Date San Time San	Customer Sample ID: ASR-7MS2 Date Sampled: 07/28/97 Time Sampled: 20:45 Sample Matrix: Veter  PARAMETER STEEL CESSE [PT] CM  ***COMPARE TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMPANY TO COMP		Laboratory Samp Date Received Time Received	: 98/1	1/97	
TEST HET HOD	PARAMETER (PEST DESCRIPTION	ERPLE RESULT	REPORTING LINET	~~ ON 17.5	DATE	ΤE
EPA 351.3		<1.0	1,0	₩e/L	08/07/97	de
₽ 5310c	Urgenic Carbon, Total (TOC)	1	1 1	eg/L	08/12/97	
PA 206.7	Aluminum (Al), Total	<0.05	0.05	mg/L	06/14/97	94
PA 200.7	(ron (Fe), Total	<0.05	0,05	eng/L	08/16/97	g,
PA 200.7	Lithium (Li), fotal	0.03	0.01	<b>RE</b> /L	05/10/97	
PA 200.7	Magnesium (Mg), Total	0,49	0.05	#g/L	08/14/97	9
PA 200.7	Manganese (Mn), Total	<0.05	0.05	mg/L	08/14/97	
PA 200,7	Potassium (K), Total	Z	1	mg/L	08/14/97	9
PA 208.7	Silica Diemide (SIDZ), Total	12.5	0.1	mg/L	08/14/97	9
PA 200.7	Sodium (Mn), Total	501	1	mg/L	08/14/97	94
PA 200.7	Acid Digestion, Total Metals	Complete			08/04/97	d
					İ	
				-		
•						1
			<u> </u>			
			1			
			!			
				Ì		
				]		
				[		

Page 1

### CITY OF LAREDO, WATER UTILITIES LAB SERVICES

PROJECT: ASR

DATE: Mar. 27,1998

Sample ID:

Unitec 7/13/97

Lab ID:

971407

Date Sampled: 7/13/9 Time Sampled: 13:15

Date Received: 7/14/97 Time Received: 10:42

SAMPLE

TEST METHOD	PARAMETER	RESULT	UNITS	DATE	TECH
SM 2510B	Conductivity	4730	us/cm	7/14/97	НМ
SM 2540C	Total Dissolved Solids	2164	mg/L	7/18/97	AG
SM 2540 H+B	рН	8	s.u.	7/14/97	нм
SM 2320 B	Total Alkalinity	1196	mg/L	7/14/97	нм
SM 2320 B	Phenolphthalein Alkalinity	ND	mg/L	7/14/97	нм
SM 2320 B	Carbonate	О	mg/L	CALC.	
SM 2320 B	Bicarbonate	1196	mg/L	CALC.	
SM 2320 B	Hardness	20	mg/L	7/14/97	нм
EPA 300.7	Calcium	6	mg/L	7/14/97	нм
EPA 300.0	Magnesium	1	mg/L	7/14/97	нм
EPA 300.0	Bromide	3.275	mg/L	7/16/97	JCM
EPA 300.0	Nitrate	ND	mg/L	7/16/97	JCM
EPA 300.0	Sulfate	ND	mg/L	7/14/97	JCM
EPA 300.0	Chloride	943	mg/L	7/14/97	JCM
EPA 300.0	Flouride	2.924	mg/L	7/16/97	JCM
EPA 300.0	Nitrite	ND	mg/L	7/16/97	JCM
EPA 300.0	Ortho-Phosphate	ND	mg/L	7/16/97	JCM
EPA 300.7	Lithium	NA	mg/L		
EPA 300.7	Potassium	NA	mg/L		
AM 4500 MH3	Ammonia Nitrogen	1	mg/L	7/24/97	JCM

### City of Laredo, Water Utilities Department

### Laboratory Services

PROJECT: Aquifer Storage and Recovery

PROJECT ID: ASR 8/26/97 DATE:

Sample ID Lab ID Sample Location Chain of Custody	Unitec 971407-UN Pump Discharge 0304	Samp Date I	le Date 7/13/97 le Time 1315 Received 7/14/97 Received 1042	Sampler PVN, BC Sample Condition Good	
CONSTITUE	NT RESULT	UNITS	DATE COMPLETE	TECH.	İ
pH	8.00	S.U.	7/14/97	НМ	:
T-Alkal	1,1 <b>96.00</b>	mg/L	7/14/9 <b>7</b>	НМ	
P-Alkal	0.00	Not Detect	7/14/ <del>9</del> 7	HM	1
Hardness	20.00	mg/l	7/14/97	ŀIМ	
Calcium	6.00	mg/L	7/14/97	HM	- [
Magnesium	0.97	mg/l	7/14/97	HM	<b>;</b>
Conduct	4,730.00	uS/cm	7/14/ <del>9</del> 7	НМ	
TDS	2,164.00	mg/i	7/18/97	НМ	]
Bromide	3.28	mg/L	7/16/97	JCM	į
Chloride	942.97	mg/L	7/14/97	JCM	İ
Fluoride	2.92	mg/L	7/14/97	JCM	ĺ
Nitrate	0.05	Not Detect	7/16/97	JCM	i
Nitrite	0.05	Not Detect	7/16/97	JCM	
O-Phosphat	0.01	Not Detect	7/16/ <b>9</b> 7	JCM	ĺ
Sulfate	<b>1.90</b>	Not Detect	7/14/97	JCM	İ
Amm. Nitro	1.01	mg/L	7/24/97	JCM	!
TKN	1.20	mg/L	7/31/97	Cor	j
TOC	2.00	mg/L	8/ 8/97	Cor	İ
Aluminum	0.06	mg/L	7/21/97	Cor	:
Iron	0.22	mg/L	7/21/97	Cor	- 1
Lithium	0.18.	mg/L	7/29/97	Cor	Ì
Magnesium	10.00	mg/L	7/21/97	Cor	
Manganese	000	Not Detect	7/21/97	Cor	1
Potassium	5.00	mg/i	7/21/97	Cor	;
SiO2 Total	23.40	mg/l	7/21/97	Cor	j
1	10 000 00	-		_	1

7/21/97

Cor



0.00 00,0 0.00 mg/L

13,900.00

Sodium



- 103

LABORATORY TEST RESULTS

Job Number: 972185

Date: 08/11/97

CUSTOMER: City of Laredo

PROJECTS ASK

ATTN: Adrian Montaneyor

Customer Sample ID: ASR-UNITEC Date Sampled....: 07/13/97 Time Sampled....: 13:15 Sample Matrix....: Water Laboratory Sample ID: 972188-2 Date Received.....: 07/16/97 Time Received.....: 09:00

TEST JEET HOO	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNLUTS	DATE	TECH
EPA 351.3	Mitrogen, Total Kjeldehl es N (TKN)	1.2	1.0	mg/L	07/31/97	
SPI 5310C	Organic Carbon, Total (TOC)	2	1	mg/L	08/08/97	1
EPA 200.7	Aluminum (Al), Total	0.06	0.05	ang/L	07/21/97	}
EPA 200.7	Iron (Fe), Total	0.22	0.05	mg/L	07/21/97	gcc
EPA 200.7	Lithium (Li), Total	0.18	Ø.01	ng/L	07/29/97	-84
EPA 200.7	Magnesium (Mg), Total	10	5	ng/L	07/21/97	gcc
EPA 200.7	Manganese (Mn), Total	<0.05	0.05	mg/L	07/21/97	gcc
EPA 200.7	Potassium (K), Total	5	1	mg/L	07/21/97	gec
EPA 200.7	Silica Dioxide (SIO2), Total	23.4	0.1	#G/L	07/21/97	gcc
EPA 200.7	Sodium (Na), Total	13900	100	mg/L	07/21/97	BCC
EPA 200.7	Acid Digestion, Yotal Metals	Complete	Ì	[ ].	07/17/97	dru
		}			Ì	
				j		ľ
			]	} ·		
		l		}		
		1				
				İ	1	
		1				
		}	ł			
	)				1	
		,			1	
						1
					1	

### CITY OF LAREDO, WATER UTILITIES LAB SERVICES

PROJECT: ASR

DATE: Mar. 11,1998

Sample ID: Date Sampled:

Time Sampled:

LCC 7/13/97 9:55 Lab ID:

LCC

Date Received: 7/14/97 Time Received: 10:42

SAMPLE

TEST METHOD	PARAMETER	RESULT	UNITS	DATE	TECH
SM 2510B	Conductivity	3250	us/cm	7/14/97	НМ
SM 2540C	Total Dissolved Solids	1552	mg/L	7/18/97	нм
SM 2540 H+B	рН	8.5	S.U.	7/14/97	нм
SM 2320 B	Total Alkalinity	244	mg/L	7/14/97	нм
SM 2320 B	Phenoiphthalein Alkalinity	8.5	mg/L	7/14/97	НМ
SM 2320 B	Carbonate	17	mg/L	CALC.	
SM 2320 B	Bicarbonate	227	mg/L	CALC.	!
SM 2320 B	Hardness	20	mg/L	7/14/97	нм
EPA 300.7	Calcium	6	mg/L	7/14/97	НМ
EPA 300.0	Magnesium	1	mg/L	7/14/97	нм
EPA 300.0	Bromide	1.846	mg/L	7/16/97	JCM
EPA 300.0	Nitrate	ND	mg/L	7/16/97	JCM
EPA 300.0	Sulfate	590	mg/L	7/14/97	JCM
EPA 300.0	Chloride	495	mg/L	7/14/97	JCM
EPA 300.0	Flouride	1.713	mg/L	7/16/97	JCM
EPA 300.0	Nitrite	ND	mg/L	7/16/97	JCM
EPA 300.0	Ortho-Phosphate	ND	mg/L	7/16/97	JCM
EPA 300.7	Lithium	NA	mg/L		
EPA 300.7	Potassium	NA	mg/L		
AM 4500 MH3	Ammonia Nitrogen	0.278	mg/L	7/24/97	JCM

## City of Laredo, Water Utilities Department

Laboratory Services

PROJECT:

Aquifer Storage and Recovery

PROJECT ID: ASR

DATE: 8/26/97

Lab ID Sample Location	LCC 971407-LC Pump Discharge 0303	Sample Sample Date Re Time R	Time 0955 coived 7/14/97	Sampler PVN, BC Sample Condition Good	
CONSTITUEN	T RESULT	<u>UNITS</u>	DATE COMPLET	E TECH.	
pН	8.50	S.U.	7/14/97	НМ	
T-Alkai	244.00	mg/l	7/14/97	HM	
P-Alkal	8.50	mg/L	7/1 <b>4/97</b>	HM	
Hardness	20.00	mg/L	7/14/97	HM	
Calcium	6.00	mg/l	7/14/97	HM	
Magnesium	1.00	mg/l	7/14/97	НМ	
Conduct	3,250.00	uS/cm	7/14/97	HM	
TDS	1,552.00	mg∕l	7/18/97	HM	
Bromide	1.85 🗸	mg/L	7/16/97	JCM	
Chloride	494.71	mg/L	7/14/97	JCM	
Fluoride	1.71~	mg/L	7/14/97	JCM	
Nitrate	0.05	Not Detect	7/16/97	-JCM	
Nitrite	0.05	Not Detect	7/16/ <del>9</del> 7	JCM	
O-Phosphat	0.01	Not Detect	7/16/97	JCM	
Sulfate	589.79	mg/L	<i>7</i> /14/97	JCM	
Amm. Nitro	-0.28	mg/L	7/24/97	JCM	
TKN	1.00	Not Detect	7/31/97	Cor	
TOC	1.00	mg/l	8/ 8/97	Cor	
Aluminum	0.07	mg/L	<i>7/</i> 21/97	Car	
lron	0.05	Not Detect	<i>7/</i> 21/97	Cor	
Lithium	0.09 ~	mg/L	7/29/97	Cor	
Magnesium	1.58	mg/L	<i>7/</i> 21/97	Cor	
Manganese	0.05	Not Detect	7/21/97	Cor	
Potassium	1.00	mg/L	<i>7/</i> 21/97	Cor	
SiO2 Total	-12.50	mg/L	7/21/97	Сог	
Sodium	618.00	mg/L	7/21/97	Cor	
	0.00	-			
<u>{</u>	0.00				
	0.00				



Job Number: 972188

### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 08/11/97

CUSTOMER: City of Lursdo PROJECT: ASR

ATTN: Adrien Montemayor

Customer Sample ID: ASR-LCC Date Sampled.....: 07/13/97 Time Sampled....: 09:55 Sample Matrix....: Water

Laboratory Sample ID: 972188-1 Date Received.....: 07/16/97 Time Received.....: 09:00

TEST WETHOD	PARAMETER/JEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	units	DATE	TECH
EPA 351.3	Nitrogen, Total Kjeldahl as M (TKM)	<1.0	1.0	mg/L	07/31/97	deh
SM 5310C	Organic Carbon, Total (TDC)	1	1	mg/L	08/08/97	deh
EPA 200.7	Aluminum (Al), Total	0.07	0.05	Mg/L	07/21/ <del>9</del> 7	gce
EPA 200.7	Iron (Fe), Total	<0.05	0.05	mg/L	97/21/97	gcc
EPA 200.7	Lithium (Li), Total	0.09	0.01	mg/L	07/29/97	<b>"</b> 8U
EPA 200.7	Magnesium (Mg), Total	1.58	0.05	mg/L	07/21/97	gcc
EPA 200.7	Manganese (Mn), Total	<0.05	0.05	mg/L	07/21/97	gcc
EPA 200.7	Potsssium (K), Total	1	1	mg/L	07/21/97	gcc
EPA 200.7	Silica Dioxide (SiO2), Total	12.5	0.1	mg/L	07/21/97	gec
EPA 200.7	Sodium (Na), Yotal	618	1	mg/L	07/21/97	gcc
EPA 200.7	Acid Digestion, Total Metals	Complete			07/17/97	dnw

### CITY OF LAREDO, WATER UTILITIES LAB SERVICES

PROJECT: ASR

DATE: Mar. 27,1998

Sample ID: Date Sampled:

Time Sampled:

Jefferson Plant

7/16/97

7/16/97 11:30 Lab ID:

971607

Date Received: 7/16/97 Time Received: 12:02

SAMPLE

		SAMPLE			
TEST METHOD	PARAMETER	RESULT	UNITS	DATE	TECH
SM 2510B	Conductivity	1093	us/cm	7/16/97	НМ
SM 2540C	Total Dissolved Solids	516	mg/L	7/18/97	AG
SM 2540 H+B	рН	8.2	S.U.	7/16/97	нм
SM 2320 B	Total Alkalinity	101	mg/L	7/16/97	НМ
SM 2320 B	Phenolphthalein Alkalinity	1	mg/L	7/16/97	НМ
SM 2320 B	Carbonate	2	mg/L	CALC.	
SM 2320 B	Bicarbonate	99	mg/L	CALC.	
SM 2320 B	Hardness	266	mg/L	7/16/97	нм
EPA 300.7	Calcium	78	mg/L	7/16/97	НМ
EPA 300.0	Magnesium	17	mg/L	7/16/97	НМ
EPA 300.0	Bromide	0.128	mg/L	7/18/97	JCM
EPA 300.0	Nitrate	0.112	mg/L	7/18/97	JCM
EPA 300.0	Sulfate	179	mg/L	7/21/97	JCM
EPA 300.0	Chloride	141	mg/L	7/21/97	JCM
EPA 300.0	Flouride	0.724	mg/L	7/18/97	JCM
EPA 300.0	Nitrite	ND	mg/L	7/18/97	JCM
EPA 300.0	Ortho-Phosphate	ND	mg/L	7/18/97	JCM
EPA 300.7	Lithium	NA	mg/L		
EPA 300.7	Potassium	NA	mg/L		
AM 4500 MH3	Ammonia Nitrogen	0.989	mg/L	35635	JCM

### City of Laredo, Water Utilities Department

0.00 0.00

Laboratory Services

PROJECT:

Aquifer Storage and Recovery

PROJECT ID: ASR DATE:

8/26/97

Jefferson Sample ID 971607-JW Lab ID **Spicket** Sample Location 0306

Sample Date Sample Time

Date Received

7/16/97 1130 7/16/97

Sampler BC Sample Condition Good

Time Received 1202 Chain of Custody CONSTITUENT RESULT UNITS **DATE COMPLETE** TECH. S.U. pН 8.20 7/16/97 HM T-Alkal 101.00 mg/L 7/16/97 HM P-Alkal 1.00 mg/L 7/16/97 HM Hardness 266.00 mg/L 7/16/97 HM ·78.00 · mg/L 7/16/97 Calcium HM 17.00 Magnesium mg/L 7/16/97 HM 1,093.06 uS/cm Conduct 7/16/97 HM TDS \$16.00 mg/L 7/16/97 HM Bromide 0.13 mg/L 7/18/97 **JCM** Chloride 141.03 mg/L 7/21/97 **JCM** Fluoride .0.72 mg/L 7/18/97 **JCM** Nitrate 0.11 mg/L 7/21/97 **JCM** Nitrite Not Detect 0.05 7/21/97 **JCM** O-Phosphat Not Detect 0.01 7/21/97 **JCM** mg/L Sulfate 178.98 7/18/97 **JCM** mg/LAmm. Nitro 0.99 7/24/97 **JCM** -TKN 7/31/97 ·3.40 mg/L Сог -TOC 5.00 mø/L 8/12/97 Cor __Aluminum .0.35 mg/L 8/12/97 Cor 0.05 Not Detect - Iron 8/12/97 Сог - Lithium 0.02 -Not Detect 7/29/97 Cor **20.90** - Magnesium mg/L 8/12/97 Cor Not Detect Manganese 0.05 8/12/97 Cor Potassium 4.00 mg/L 8/12/97 Cor SiO2 Total 9.50 mg/l 8/12/97 Сог Sodjum 121.00 mg/L 8/12/97 Cor 0.00



Job Number: 97264

Bets: 08/15/97

Bets: 08/15/97

Dets: 08/15/97

Customer Sample ID: ASR-ANTP 

Water

Customer Sample ID: ASR-ANTP

Date Sampled....: 07/16/97

Time Sampled....: 11:30

Sample Netria...: Water

Time Received....: 09:30

1 70 700	NAME OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERS	Laste Barrie	REFORME THE	<b>W</b> 115 **	Dail.	3
PA 351.3	Mitrogon, Total Kjeldohl us W (TIDI)	3.4	1.0	reg/L	07/31/97	de
¥ 5310¢	Organic Carbon, Total (TOC)	5	1	mg/L	08/12/97	
P4 <b>20</b> 0.7	Aluminum (Al), Total	0.35	0.05	<b>≈g/</b> L	08/12/97	•
PA 200.7	Iron (Fe), Total	⋖₀.05	0.05	mg/L	08/12/97	
7.005 AP	Lithium (Li), Total	<b>⋖</b> 0.02	0.02	<b>43</b> /L	07/29/97	
PA 200.7	Hagnestun (Ag), Total	20_9	0.05	MQ/L	08/12/97	
PA 200.7	Rengenese (Mn), Yotal	<b>∞.05</b>	0.05	Mg/L	08/12/97	9
PA 200.7	Potensium (K), Total		1	<b>≈e/L</b>	06/12/97	
M 200./	Silies Bloxids (3102), Total	9.5	0.1	<b>≈g/</b> L	08/12/97	
PA 200.7	Bodium (Na), Total	121	1	mg/L	08/12/97	ļ,
A 200.7	Acid Bigestion, Total Metals	Complete			07/24/97	

Page 2

### CITY OF LAREDO, WATER UTILITIES LAB SERVICES

PROJECT: ASR

DATE: Mar. 11,1998

Sample 1D: Date Sampled: Time Sampled:

DEL MAR 7/15/97 15:55

Lab ID:

DEL MAR Date Received: 7/16/97

Time Received: 12:02

SAMPLE

TEST METHOD	PARAMETER	RESULT	UNITS	DATE	TECH
SM 2510B	Conductivity	NA	us/cm		
SM 2540C	Total Dissolved Solids	NA	mg/L		
SM 2540 H+B	рН	NA	S.U.		
SM 2320 B	Total Alkalinity	NA	mg/L		
SM 2320 B	Phenolphthalein Alkalinity	NA	mg/L		
SM 2320 B	Carbonate	NA	mg/L	CALC.	
SM 2320 B	Bicarbonate	NA	mg/L	CALC.	
SM 2320 B	Hardness	262	mg/L	7/16/97	нм
EPA 300.7	Calcium	NA	mg/L		
EPA 300.0	Magnesium	NA	mg/L		
EPA 300.0	Bromide	NA	mg/L		
EPA 300.0	Nitrate	NA	mg/L		
EPA 300.0	Sulfate	1990	mg/L	8/25/97	JCM
EPA 300.0	Chloride	137	mg/L	8/25/97	JCM
EPA 300.0	Flouride	NA	mg/L		
EPA 300.0	Nitrite	NA	mg/L		
EPA 300.0	Ortho-Phosphate	NA	mg/L		
EPA 300.7	Lithium	NA	mg/L		
EPA 300.7	Potassium	NA	mg/L		
AM 4500 MH3	Ammonia Nitrogen	NA	mg/L		

### City of Laredo, Water Utilities Department

#### Laboratory Services

PROJECT:

Sample ID

Aquifer Storage and Recovery

PROJECT ID:

ASR

Del Mar

DATE: 8/26/97

971607-DM Sample Time Lab ID 1555 Sample Condition Good Plant Spicket Date Received 7/16/97 Sample Location Chain of Custody 0305 Time Received 1202 1 131122 **UNITS** RESULT DATE COMPLETE CONSTITUENT TECH. 0.00 Not Analyz pН T-Alkal 0.00 Not Analyz P-Alkal 0.00 Not Analyz Hardness 7/16/97 262,00 mg/L HM 0.00~ Calcium **Not Analyz** Magnesium 0.00 Not Analyz Conduct 0.00 Not Analyz TDS 0.00 Not Analyz ^FBromide 1.37 mg/L 8/22/97 **JCM** Chloride 136.98 8/22/97 mg/L **JCM** Fluoride Not Detect 1.00 8/22/97 **JCM** Not Detect Nitrate 0.05 8/23/97 **JCM** Nitrite 0.05 Not Detect 8/23/97 JCM O-Phosphau 0.01 Not Detect 8/23/97 **JCM** 1,999.16~ Error Sulfate 8/23/97 **JCM** Amm. Nitro - 0.44 🗸 mg/L 7/24/97 **JCM** TKN 1.00 Not Detect 7/31/97 Cor NTOC 2.00 mg/L 8/12/97 Сот _ 0.18 ~ Aluminum mg/L 8/12/97 Cor -- 0.05 iron Not Detect 8/12/97 Cor Lithium - 0.02 Not Detect 8/12/97 Cor YMagnesium 21.10 mg/L Саг 8/12/97 .0.05 Not Detect Manganese 8/12/97 Cor Potassium 4.00 8/12/97 Cor mg/L SiO2 Total 8.30 mg/L 8/12/97 Cor Sodium 119.00 mg/L 8/12/97 Cor 0.00 0.00 0.00

Sample Date

7/15/97

Sampler

PVN, BC

· · - . · · •



Job Bumber: 972264

#### **CORE LABORATORIES**

Date: 08/15/97

LABORATORY TEST RESULTS

THE RESERVE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE

CLECTOWNY Sample ID: ASR-DEL MAR Date Sampled....: 07/16/97 Time Sampled....: 15:55 Sample Matrix....: Water

Laboratory Emple (D: 972264-2 Date Received.....; 07/23/97 Time Received.....: 09:30

AF TOWN			REDUCT PRO-CIPIT		DAYE.	2200
EPA 351.3	Mitrogen, Tatal Kjeldahi as 8 (TCB)	<1.0	1.0	79.5	2 2 2 2 2 2	122
SM 5310c	Organic Carbon, Total (TCC)	2	1	mg/L	07/31/97	1
EPA 200.7	Aluminum (AL), Total	D.18	·	<b>42/L</b>	08/12/97	1
EPA 200.7		<0.05	0.05	ang/L	08/12/97	
	Irum (Fe), Total		0.05	mg/L	08/12/97	1
PA 200.7	Lithium (Li), Total	<0.02	0.02	ma/L	07/29/97	1
PA 200.7	Magnetium (Mg), Total	21.1	0.05	Ng/L	08/12/97	ľ
PA 200.7	Mangamese (Mh), Total	<0.05	0,05	mg/L	08/12/97	1
PA 200.7	Pormanium (K), Total		1	<b>PQ</b> /L	<b>98/12/97</b>	1
PA 200.7	Silica Dinxida (SiQ2), Total	<b>a.</b> 3	0.1	mez/L	05/12/97	Į.
PA 200.7	Sodium (Ma), Total	119	1	<b>æg</b> /L	08/12/97	1
PA 200.7	Acid Digestion, Total Metals	Complete			07/24/97	٦
		1				
					]	
					Í	
		Ì				
		ļ				
					Ĺ	
		!			j	
					ļ	
		1			1	
		L				L

Page 3

### LABORATORY REPORT



DATE: FEBRUARY 26, 1998

TO: PETER VAN NOORT, CH2MHILL

**CC:** FERNANDO ROMAN, P.E., UTILITIES DIR.

GARARDO PINZON, P.E., ASST. DIRECTOR

FROM: ADRIAN MONTEMAYOR, LAB SUPT.

**RE:** ASR, COMPATIBILITY TEST RESULTS

Project: Aquifer Storage and Recovery (ASR)

Report Date: 2/25/98

### **OVERVIEW REPORT**

Sample ID	Iron (Fe)		Calcium	Alk T	Alk P		Chloride	TDS	Cond.	Sulfate	pН	HCO3	Mg		Turbidity
SD.I.01	0.05	0.05	89.80	114.00	0.00	276.00	129.00	682.00	1,057.00	183.00	7.60	139.00	12.60	99.00	0.12
SD.I.02	0.05	0.05	89.80	113.00	0.00	282.00	135.00	680.00	1,075.00	191.00	7.60	113.00	14.10	103.00	0.78
SD.R.01	0.99	0.05	74.50	128.00	2.00	236.00	141.00	708.00	1,156.00	198.00	8.10	15.10	12.20	143.00	4.43
SD.R.02	0.20	0.05	21.60	160.00	16.00	92.00	176.00	846.00	1,452.00	233.00	8.80	156.00	9.20	255.00	0.71
SD.R.03	0.16	0.05	24.80	240.00	20.00	86.00	370.00	1,466.00	2,410.00	440.00	8.80	244.00	5.80	500.00	0.60
CY1.I.01	0.05	0.05	93.00	120.00	0.00	292.00	139.00	642.00	1,106.00	196.00	7.60	146.00	12.20	105.00	0.30
CY1.I.02	0.05	0.05	80.96	121.00	0.00	286.00	132.00	658.00	1,105.00	187.00	7.90	148.00	20.40	106.00	0.46
CY1.I.03	0.05	0.05	78.60	119.00	0.00	280.00	133.00	668.00	1,104.00	188.00	7.60	145.00	20.40	105.00	0.13
CY1.R.01	0.17	0.05	86.60	127.00	0.00	296.00	137.00	716.00	1,124.00	195.00	7.60	155.00	19.40	97.00	1.67
CY1.R.02	0.10	0.05	83.40	124.00	0.00	294.00	137.00	618.00	1,132.00	196.00	7.60	151.00	20.90	96.00	0.76
CY1.R.03	0.05	0.05	26.40	160.00	5.00	86.00	191.00	890.00	1,514.00	250.00	8.40	183.00	4.90	>KOQ	0.16
CY1.R.04	0.18	0.05	20.00	191.00	7.00	65.00	211.00	1,010.00	1,677.00	264.00	8.60	216.00	3.60/	250.00	0.10
DLY.CY1.01				120.00	0.00	298.00	134.00		1,089.00	190.00	7.60	146.00	(		0.07
DLY.CY1.02				121.00	0.00	300.00	133.00		1,094.00	189.00	7.60	147.00			0.07
DLY.CY1.03				120.00	0.00	279.00	132.00		1,107.00	187.00	7.60	146.00	21	0.00	0.24
DLY.CY1.04				119.00	0.00	274.00	128.00		1,095.00	181.00	7.60	145.00	Pv	W)	0.68
DLY.CY1.05				118.00	0.00	300.00	132.00		1,099.00	186.00	7.60	144.00	3/	3/98	0.21
DLY.CY1.06				118.00	0.00	284.00	137.00		1,102.00	192.00	7.60	144.00	-/	I	0.26

Project: Aquifer Storage and Recovery (ASR)

Report Date: 2/25/98

### **OVERVIEW REPORT**

Sample ID	Iron (Fe)	Mn	Calcium	Alk T	Alk P	Hard.	Chloride	TDS	Cond.	Sulfate	pН	HCO3	Mg	Sodium	Turbidity	
DLY.CY1.07				124.00	0.00	290.00	137.00		1,114.00	192.00	7.60	157.00			0.16	_
DLY.CY1.08				117.00	0.00	290.00	137.00		1,112.00	192.00	7.60	143.00			0.17	
DLY.CY1.09				122.00	0.00	284.00	136.00		1,120.00	194.00	7.60	149.00			0.91	
DLY.CY1.10				147.00	0.00	148.00	136.00		1,206.00	191.00	8.00	179.00			0.28	
DLY.CY1.11				160.00	5.00	88.00	188.00		1,491.00	245.00	8.40	183.00			0.16	
DLY.CY1.12				186.00	8.00	70.00	202.00		1,630.00	260.00	8.50	207.00			0.16	
CY1.I.04	0.05	0.05	85.80	126.00	0.00	290.00	136.00	666.00	1,105.00	190.00	7.60	154.00	18.50	107.00	0.19	
CY1.R.05	0.05	0.05	18.00	205.00	8.00	67.00	231.00	1,096.00	1,809.00	279.00	8.60	231.00	5.30	260.00	0.10	
DLY.CY1.13				205.00	10.00	67.00	230.00		1,807.00	277.00	8.60	226.00			0.18	
CY1.R.06	0.06	0.05	18.00	210.00	9.00	70.00	282.00	1,254.00	2,070.00	325.00	8.60	234.00	6.08	350.00	0.07	
DLY.CY1.14				211.00	13.00	62.00	281.00		2,060.00	323.00	8.60	226.00			0.10	
CY1.R.07	0.05	0.05	17.20	216.00	10.00	61.00	306.00	1,350.00	2,230.00	351.00	8.60	239.00	4.38	380.00	0.07	
DLY.CY1.15				217.00	11.00	59.00	300.00		2,230.00	352.00	8.60	238.00			0.07	
CY1.R.08	0.05	0.05	15.60	213.00	11.00	58.00	324.00	1,410.00	2,370.00	359.00	8.60	233.00	4.62	410.00	0.07	
DLY.CY1.16				215.00	12.00	55.00	326.00		2,370.00	362.00	8.60				0.18	

Project: Aquifer Storage and Recovery (ASR)

Sample IDSD.I.01		Sample Date1/14/98	Date Received 1	/14/98	Sample Location.	Del Mar Plant	Custody1702
Lab IDLAB-A		Sample Time1430	Time Received1	500	Sampler	P. VanNoort	
LAB - A ANAI	LYSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Det	0.05	mg/L	Core Labs		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	89.80			mg/L	CC	1/15/98	
Alkalinity - Total	114.00			mg/L	CC	1/15/98	
Alkalinity - Phen	0.00			mg/L	CC	1/15/98	
Total Hardness	276.00			mg/L	CC	1/15/98	
Sulfate	183.00			mg/L	CC	1/19/98	
Chloride	129.00			mg/L	CC	1/19/98	
TDS	682.00			mg/L	JCM	1/16/98	
Conductivity	1,057.00			uS/cm	CC	1/15/98	
рН	7.60			S.U.	CC	1/15/98	
Bicarbonate	139.00			mg/L	Cal		
Magnesium	12.60			mg/L	CC	1/15/98	
Sodium (Na)	99.00		1.00	mg/L	Core Lab		
Turbidity	0.12			NTU	CC	1/15/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDSD.I.02		Sample Date1/14/98	Date Received1			Del Mar Plant	Custody1703
Lab IDLAB-A		Sample Time1615	Time Received1	005	Sampler	P. VanNoort	
LAB - A ANAL	YSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Dec	0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Dec	0.05	mg/L	Core Lab		
Calcium	89.80			mg/L	CC	1/15/98	•
Alkalinity - Total	113.00			mg/L	CC	1/15/98	
Alkalinity - Phen	0.00			mg/L	CC	1/15/98	
Total Hardness	282.00			mg/L	CC	1/15/98	
Sulfate	191.00			mg/L	CC	1/19/98	
Chloride	135.00			mg/L	CC	1/19/98	
TDS	680.00			mg/L	JCM	1/16/98	
Conductivity	1,075.00			uS/cm	CC	1/15/98	
рН	7.60			S.U.	CC	1/15/98	
Bicarbonate	113.00			mg/L	Cal		
Magnesium	14.10			mg/L	CC	1/15/98	
Sodium (Na)	103.00		1.00	mg/L	Core Lab		
Turbidity	0.78			NTU	CC	1/15/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDSD.R.01	-	Sample Date1/14/98	Date Received1	/15/98	Sample Location	Del Mar Plant	Custody1704
Lab IDLAB-A		Sample Time1700	Time Received1	005	Sampler	P. VanNoort	
LAB-A ANAI	LYSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.99		0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Dec	0.05	mg/L	Core Lab		
Calcium	74.50			mg/L	CC	1/15/98	
Alkalinity - Total	128.00			mg/L	CC	1/15/98	
Alkalinity - Phen	2.00			mg/L	CC	1/15/98	
Total Hardness	236.00			mg/L	CC	1/15/98	
Sulfate	198.00			mg/L	CC	1/19/98	
Chloride	141.00			mg/L	CC	1/19/98	
TDS	708.00			mg/L	JCM	1/16/98	
Conductivity	1,156.00			uS/cm	CC	1/15/98	
pН	8.10			S.U.	CC	1/15/98	
Bicarbonate	15.10			mg/L	Cal		
Magnesium	12.20			mg/L	CC	1/15/98	
Sodium (Na)	143.00		1.00	mg/L	Core Lab		
Turbidity	4.43			NTU	CC	1/15/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDSD.R.02		Sample Date1/14/98	Date Received1	/15/98		Del Mar Plant	Custody1705
<u>Lab ID</u> LAB-A		Sample Time1730	Time Received1	005	Sampler	P. VanNoort	
LAB - A ANAI	YSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.20		0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	21.60			mg/L	CC	1/15/98	·
Alkalinity - Total	160.00			mg/L	CC	1/15/98	
Alkalinity - Phen	16.00			mg/L	CC	1/15/98	
Total Hardness	92.00			mg/L	CC	1/15/98	
Sulfate	233.00			mg/L	CC	1/19/98	
Chloride	176.00			mg/L	CC	1/19/98	
TDS	846.00			mg/L	JCM	1/16/98	
Conductivity	1,452.00			uS/cm	CC	1/15/98	
pН	8.80			S.U.	CC	1/15/98	
Bicarbonate	156.00			mg/L	Cal		
Magnesium	9.20			mg/L	CC	1/15/98	
Sodium (Na)	255.00		5.00	mg/L	Core Lab		
Turbidity	0.71			NTU	CC	1/15/98	

Project: Aquifer Storage and Recovery (ASR)

Lab IDLAB-A         Sample Time	Sample ID,SD.R.03		Sample Date1/14/98	Date Received1	/15/98		Del Mar Plant	Custody1706
PARAMETER         RESULT         DETECTION         REPORTING LIMIT         UNITS         TECH         DATE COMPLETED           Iron (Fe)         0.16         0.05         mg/L         Core Lab           Manganese (Mn)         0.05         Non-Det         0.05         mg/L         Core Lab           Calcium         24.80         mg/L         CC         1/15/98           Alkalinity - Total         240.00         mg/L         CC         1/15/98           Alkalinity - Phen         20.00         mg/L         CC         1/15/98           Total Hardness         86.00         mg/L         CC         1/15/98           Sulfate         440.00         mg/L         CC         1/19/98           Chloride         370.00         mg/L         CC         1/19/98           TDS         1,466.00         mg/L         JCM         1/16/98           Conductivity         2,410.00         uS/cm         CC         1/15/98           pH         8.80         S.U.         CC         1/15/98           Bicarbonate         244.00         mg/L         CC         1/15/98           Sodium (Na)         500.00         10.00         mg/L         Core Lab	Lab IDLAB-A		Sample Time1830	Time Received1	005	Sampler	P. VanNoort	
PARAMETER         RESULT         DETECTION         REPORTING LIMIT         UNITS         TECH         DATE COMPLETED           Iron (Fe)         0.16         0.05         mg/L         Core Lab           Manganese (Mn)         0.05         Non-Det         0.05         mg/L         Core Lab           Calcium         24.80         mg/L         CC         1/15/98           Alkalinity - Total         240.00         mg/L         CC         1/15/98           Alkalinity - Phen         20.00         mg/L         CC         1/15/98           Total Hardness         86.00         mg/L         CC         1/15/98           Sulfate         440.00         mg/L         CC         1/19/98           Chloride         370.00         mg/L         CC         1/19/98           TDS         1,466.00         mg/L         JCM         1/16/98           Conductivity         2,410.00         uS/cm         CC         1/15/98           pH         8.80         S.U.         CC         1/15/98           Bicarbonate         244.00         mg/L         CC         1/15/98           Sodium (Na)         500.00         10.00         mg/L         Core Lab	TAR-A ANAT	VSES						
Iron (Fe)			DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Manganese (Mn)       0.05       Non-Det       0.05       mg/L       Core Lab         Calcium       24.80       mg/L       CC       1/15/98         Alkalinity - Total       240.00       mg/L       CC       1/15/98         Alkalinity - Phen       20.00       mg/L       CC       1/15/98         Total Hardness       86.00       mg/L       CC       1/15/98         Sulfate       440.00       mg/L       CC       1/19/98         Chloride       370.00       mg/L       CC       1/19/98         TDS       1,466.00       mg/L       JCM       1/16/98         Conductivity       2,410.00       uS/cm       CC       1/15/98         pH       8.80       S.U.       CC       1/15/98         Bicarbonate       244.00       mg/L       Cal       CC       1/15/98         Sodium (Na)       500.00       10.00       mg/L       Core Lab	i		·					
Alkalinity - Total       240.00       mg/L       CC       1/15/98         Alkalinity - Phen       20.00       mg/L       CC       1/15/98         Total Hardness       86.00       mg/L       CC       1/15/98         Sulfate       440.00       mg/L       CC       1/19/98         Chloride       370.00       mg/L       CC       1/19/98         TDS       1,466.00       mg/L       JCM       1/16/98         Conductivity       2,410.00       uS/cm       CC       1/15/98         pH       8.80       S.U.       CC       1/15/98         Bicarbonate       244.00       mg/L       Cal       CC       1/15/98         Magnesium       5.80       mg/L       CC       1/15/98         Sodium (Na)       500.00       10.00       mg/L       Core Lab	1	0.05	Non-Det	0.05	_	Core Lab		
Alkalinity - Phen   20.00   mg/L   CC   1/15/98     Total Hardness   86.00   mg/L   CC   1/15/98     Sulfate   440.00   mg/L   CC   1/19/98     Chloride   370.00   mg/L   CC   1/19/98     TDS   1,466.00   mg/L   JCM   1/16/98     Conductivity   2,410.00   uS/cm   CC   1/15/98     pH   8.80   S.U.   CC   1/15/98     Bicarbonate   244.00   mg/L   Cal     Magnesium   5.80   mg/L   CC   1/15/98     Sodium (Na)   500.00   10.00   mg/L   Core Lab	Calcium	24.80			mg/L	CC	1/15/98	
Total Hardness       86.00       mg/L       CC       1/15/98         Sulfate       440.00       mg/L       CC       1/19/98         Chloride       370.00       mg/L       CC       1/19/98         TDS       1,466.00       mg/L       JCM       1/16/98         Conductivity       2,410.00       uS/cm       CC       1/15/98         pH       8.80       S.U.       CC       1/15/98         Bicarbonate       244.00       mg/L       Cal         Magnesium       5.80       mg/L       CC       1/15/98         Sodium (Na)       500.00       10.00       mg/L       Core Lab	Alkalinity - Total	240.00			mg/L		1/15/98	
Sulfate       440.00       mg/L       CC       1/19/98         Chloride       370.00       mg/L       CC       1/19/98         TDS       1,466.00       mg/L       JCM       1/16/98         Conductivity       2,410.00       uS/cm       CC       1/15/98         pH       8.80       S.U.       CC       1/15/98         Bicarbonate       244.00       mg/L       Cal         Magnesium       5.80       mg/L       CC       1/15/98         Sodium (Na)       500.00       10.00       mg/L       Core Lab	Alkalinity - Phen	20.00			mg/L		1/15/98	
Chloride       370.00       mg/L       CC       1/19/98         TDS       1,466.00       mg/L       JCM       1/16/98         Conductivity       2,410.00       uS/cm       CC       1/15/98         pH       8.80       S.U.       CC       1/15/98         Bicarbonate       244.00       mg/L       Cal         Magnesium       5.80       mg/L       CC       1/15/98         Sodium (Na)       500.00       10.00       mg/L       Core Lab	Total Hardness	86.00					1/15/98	
TDS 1,466.00 mg/L JCM 1/16/98 Conductivity 2,410.00 uS/cm CC 1/15/98 pH 8.80 S.U. CC 1/15/98 Bicarbonate 244.00 mg/L Cal Magnesium 5.80 mg/L CC 1/15/98 Sodium (Na) 500.00 10.00 mg/L Core Lab	Sulfate	440.00						
Conductivity       2,410.00       uS/cm       CC       1/15/98         pH       8.80       S.U.       CC       1/15/98         Bicarbonate       244.00       mg/L       Cal         Magnesium       5.80       mg/L       CC       1/15/98         Sodium (Na)       500.00       10.00       mg/L       Core Lab	Chloride						1/19/98	
pH       8.80       S.U.       CC       1/15/98         Bicarbonate       244.00       mg/L       Cal         Magnesium       5.80       mg/L       CC       1/15/98         Sodium (Na)       500.00       10.00       mg/L       Core Lab	· -	•			-			
Bicarbonate	, -	•						
Magnesium         5.80         mg/L         CC         1/15/98           Sodium (Na)         500.00         10.00         mg/L         Core Lab	1 *						1/15/98	
Sodium (Na) 500.00 10.00 mg/L Core Lab	Bicarbonate							
	· -						1/15/98	
	1			10.00	-		44-10	
Turbidity 0.60 NTU CC 1/15/98	Turbidity	0.60			NTU	CC	1/15/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.I.01		Sample Date1/15/98	Date Received1	/16/98	Sample Location	Del Mar Plant	Custody1708
Lab IDLAB-A		Sample Time1345	Time Received 1	120	Sampler	P. VanNoort	
LAB - A ANAI	LYSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Det	0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	93.00			mg/L	HM	1/16/98	
Alkalinity - Total	120.00			mg/L	HM	1/16/98	
Alkalinity - Phen	0.00			mg/L	HM	1/16/98	
Total Hardness	292.00			mg/L	HM	1/16/98	
Sulfate	196.00			mg/L	CC	1/19/98	
Chloride	139.00			mg/L	CC	1/19/98	
TDS	642.00			mg/L	JCM	1/22/98	
Conductivity	1,106.00			uS/cm	HM	1/16/98	
pН	7.60			S.U.	HM	1/16/98	
Bicarbonate	146.00			mg/L	Cal		
Magnesium	12.20			mg/L	HM	1/16/98	
Sodium (Na)	105.00		1.00	mg/L	Core Lab		
Turbidity	0.30			NTU	HM	1/16/98	
İ							

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.I.02 Lab IDLAB-A		Sample Date1/17/98 Sample Time,1045	Date Received1 Time Received0		Sample Location. Sampler	Del Mar Plant P. VanNoort	<u>Custody</u> 1710
LAB - A ANAL	Vere	-					
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
					TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Det	0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	80.96			mg/L	JCM	1/19/98	
Alkalinity - Total	121.00			mg/L	JCM	1/19/98	
Alkalinity - Phen	0.00			mg/L	JCM	1/19/98	
Total Hardness	286.00			mg/L	JCM	1/19/98	
Sulfate	187.00			mg/L	CC	1/19/98	
Chloride	132.00			mg/L	CC	1/19/98	
TDS	658.00			mg/L	JCM	1/22/98	
Conductivity	1,105.00			uS/cm	JCM	1/19/98	
pН	7.90			S.U.	JCM	1/19/98	
Bicarbonate	148,00			mg/L	Cal		
Magnesium	20.40			mg/L	JCM	1/19/98	
Sodium (Na)	106.00		1.00	mg/L	Core Lab		
Turbidity	0.46			NTU	JCM	1/19/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.I.03 Lab IDLAB-A		Sample Date1/19/98 Sample Time0900	<u>Date Received1</u> Time Received0		Sample Location Sampler	Del Mar Plant	<u>Custody</u> 1710
Lau IDLAD-A		Sample Time0900	Time Received	923	Sampler	F. ValiNoort	
LAB - A ANAI	YSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Det	0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	78.60			mg/L	JCM	1/19/98	
Alkalinity - Total	119.00			mg/L	JCM	1/19/98	
Alkalinity - Phen	0.00			mg/L	JCM	1/19/98	
Total Hardness	280.00			mg/L	JCM	1/19/98	
Sulfate	188.00			mg/L	CC	1/19/98	
Chloride	133.00			mg/L	CC	1/19/98	
TDS	668.00			mg/L	JCM	1/22/98	
Conductivity	1,104.00			uS/cm	JCM	1/19/98	
pН	7.60			S.U.	JCM	1/19/98	
Bicarbonate	145.00			mg/L	Cal		
Magnesium	20.40			mg/L	JCM	1/19/98	
Sodium (Na)	105.00		1.00	mg/L	Core Lab		
Turbidity	0.13	•		NTU	JCM	1/19/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.R.01		Sample Date1/23/98	Date Received1	/26/98	Sample Location.	Del Mar Plant	Custody1714
Lab IDLAB-A		Sample Time1340	Time Received1	031	Sampler	Porter/Salas	
LAB - A ANAL							(
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.17		0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		}
Calcium	86.60			mg/L	CC	1/27/98	
Alkalinity - Total	127.00			mg/L	CC	1/27/98	
Alkalinity - Phen	0.00			mg/L	CC	1/27/98	
Total Hardness	296.00			mg/L	CC	1/27/98	
Sulfate	195.00			mg/L	CC	1/26/98	
Chloride	137.00			mg/L	CC	1/26/98	
TDS	716.00			mg/L		1/23/98	}
Conductivity	1,124.00			uS/cm	CC	1/27/98	
pН	7.60			S.U.	CC	1/27/98	
Bicarbonate	155.00			mg/L	Cal		
Magnesium	19.40			mg/L	CC	1/27/98	
Sodium (Na)	97.00		1.00	mg/L	Core Lab		
Turbidity	1.67			NTU	CC	1/27/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.R.02	<b></b>	Sample Date1/23/98	Date Received1	/26/98	Sample Location	Del Mar Plant	Custody1714
Lab IDLAB-A		Sample Time1620	Time Received1	031	Sampler	Porter/Salas	
LAB-A ANAI	YSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.10		0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	83.40			mg/L	CC	1/27/98	,
Alkalinity - Total	124.00			mg/L	CC	1/27/98	
Alkalinity - Phen	0.00			mg/L	CC	1/27/98	
Total Hardness	294.00			mg/L	CC	1/27/98	
Sulfate	196.00			mg/L	CC	1/26/98	
Chloride	137.00			mg/L	CC	1/26/98	
TDS	618.00			mg/L		1/23/98	
Conductivity	1,132.00			uS/cm	CC	1/27/98	
рН	7.60			S.U.	CC	1/27/98	
Bicarbonate	151.00			mg/L	Cal		
Magnesium	20.90			mg/L	CC	1/27/98	
Sodium (Na)	96.00		1.00	mg/L	Core Lab		
Turbidity	0.76			NTU	CC	1/27/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.R.03		Sample Date1/25/98	Date Received1		Sample Location.		<u>Custody</u> 1714
Lab IDLAB-A		Sample Time1305	Time Received1	031	Sampler	Porter/Salas	
LAB - A ANAI	VSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Det	0.05	mg/L	Core Lab		•
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	26.40			mg/L	CC	1/27/98	
Alkalinity - Total	160.00			mg/L	CC	1/27/98	·
Alkalinity - Phen	5.00			mg/L	CC	1/27/98	
Total Hardness	86.00			mg/L	CC	1/27/98	!
Sulfate	250.00			mg/L	CC	1/26/98	
Chloride	191.00			mg/L	CC	1/26/98	
TDS	890.00			mg/L		1/23/98	
Conductivity	1,514.00			uS/cm	CC	1/27/98	
pН	8.40			S.U.	CC	1/27/98	
Bicarbonate	183.00			mg/L	Cal		
Magnesium	4.90			mg/L	CC	1/27/98	,
Sodium (Na)	21.00		1.00	mg/L	Core Lab		
Turbidity	0.16			NTU	CC	1/27/98	
·							

Project: Aquifer Storage and Recovery (ASR)

ample IDCY1.R.04 ab IDLAB-A		<u>Sample Date</u> 1/26/98 <u>Sample Time</u> 1628	Date Received1 Time Received1		Sample Location Sampler	Del Mar Plant Porter/Salas	Custody1716
LAB - A ANAI	LYSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.18		0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	20.00			mg/L	CC	1/27/98	
Alkalinity - Total	191.00			mg/L	CC	1/27/98	
Alkalinity - Phen	7.00			mg/L	CC	1/27/98	
Total Hardness	65.00			mg/L	CC	1/27/98	
Sulfate	264.00			mg/L	CC	2/ 2/98	
Chloride	211.00			mg/L	CC	2/ 2/98	
TDS	1,010.00			mg/L		1/27/98	
Conductivity	1,677.00			uS/cm	CC	1/27/98	
pН	8.60			S.U.	CC	1/27/98	
Bicarbonate	216.00			mg/L	Cal		
Magnesium	3.60			mg/L	CC	1/27/98	
Sodium (Na)	250.00		10.00	mg/L	Core Lab		
Turbidity	0.10			NTU	CC	1/27/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.I.04		Sample Date1/21/98	Date Received1		Sample Location.	<del>-</del>	Custody1712
Lab IDLAB-A		Sample Time0900	Time Received0	925	Sampler	Porter/Salas	
LAB - A ANAI	YSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Detect	0.05	mg/L	Core Labs		
Manganese (Mn)	0.05	Non-Detect	0.05	mg/L	Core Labs		
Calcium	85.80			mg/L	Hm	1/21/98	
Alkalinity - Total	126.00			mg/L	HM	1/21/98	
Alkalinity - Phen	0.00			mg/L	HM	1/21/98	
Total Hardness	290.00			mg/L	HM	1/21/98	
Sulfate	190.00			mg/L	CC	1/26/98	
Chloride	136.00			mg/L	CC	1/26/98	
TDS	666.00			mg/L	JCM	1/22/98	
Conductivity	1,105.00			uS/cm	HM	1/21/98	
pН	7.60			S.U.	HM	1/21/98	
Bicarbonate	154.00			mg/L	Cal		
Magnesium	18.50			mg/L	Hm	1/21/98	
Sodium (Na)	107.00		1.00	mg/L	Core Labs		
Turbidity	0.19			NTU	HM	1/21/98	

Project: Aquifer Storage and Recovery (ASR)

mple IDCY1.R.05		Sample Date1/27/98	Date Received1			Del Mar plant	Custody1716
ab IDLAB-A		Sample Time0950	Time ReceivedI	027	Sampler	Porter/Salas	
LAB - A ANA	LYSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Det	0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	18.00			mg/L	CC	1/27/98	
Alkalinity - Total	205.00			mg/L	CC	1/27/98	
Alkalinity - Phen	8.00			mg/L	CC	1/27/98	
Total Hardness	67.00			mg/L	CC	1/27/98	
Sulfate	279.00			mg/L	CC	2/ 2/98	
Chloride	231.00			mg/L	CC	2/ 2/98	
TDS	1,096.00			mg/L		1/28/98	
Conductivity	1,809.00			uS/cm	CC	1/27/98	
pН	8.60			S.U.	CC	1/27/98	
Bicarbonate	231.00			mg/L	Cal		
Magnesium	5.30			mg/L	CC	1/27/98	
Sodium (Na)	260.00		10.00	mg/L	Core Lab		
Turbidity	0.10			NTU	CC	1/27/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.R.06		Sample Date1/28/98	Date Received1.	/28/98	Sample Location.	Del Mar Plant	Custody1717
Lab IDLAB-A		Sample Time1405	Time Received1	424	Sampler	Porter/Salas	
* 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4	verne						
LAB - A ANALY							
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.06		0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	18.00			mg/L	HM	1/30/98	
Alkalinity - Total	210.00			mg/L	HM	1/30/98	
Alkalinity - Phen	9.00			mg/L	HM	1/30/98	
Total Hardness	70.00			mg/L	CC	1/30/98	
Sulfate	325.00			mg/L	CC	2/ 2/98	
Chloride	282.00			mg/L	CC	2/ 2/98	
TDS	1,254.00			mg/L		1/28/98	
Conductivity	2,070.00			uS/cm	HM	1/30/98	
pН	8.60			S.U.	HM	1/30/98	
Bicarbonate	234.00			mg/L	Cal		
Magnesium	6.08			mg/L	HM	1/30/98	
Sodium (Na)	350.00		10.00	mg/L	Core Lab		
Turbidity	0.07			NTU	HM	1/30/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.R.07		Sample Date1/29/98	Date Received1			Del Mar Plant	Custody1718
ab IDLAB-A		Sample Time1000	Time Received1	040	Sampler	Porter/Salas	
LAB - A ANA	LYSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Det	0.05	mg/L	Core Lab		
Manganese (Mn)	0.05	Non-Det	0.05	mg/L	Core Lab		
Calcium	17.20			mg/L	HM	1/30/98	
Alkalinity - Total	216.00			mg/L	HM	1/30/98	
Alkalinity - Phen	10.00			mg/L	HM	1/30/98	
Total Hardness	61.00			mg/L	НМ	1/30/98	
Sulfate	351.00			mg/L	CC	2/ 2/98	
Chloride	306.00			mg/L	CC	2/ 2/98	
TDS	1,350.00			mg/L		1/29/98	
Conductivity	2,230.00			uS/cm	НМ	1/3 <b>0/98</b>	
pН	8.60			S.U.	HM	1/30/98	
Bicarbonate	239.00			mg/L	Cal		
Magnesium	4.38			mg/L	HM	1/30/98	
Sodium (Na)	380.00		10.00	mg/L	Core Lab		
Turbidity	0.07			NTU	HM	1/30/98	

Project: Aquifer Storage and Recovery (ASR)

Sample IDCY1.R.08 Lab IDLAB-A		Sample Date1/30/98 Sample Time0930	Date Received1 Time Received1		Sample Location. Sampler		<u>Custody</u> 1719
LAB-A ANAI	YSES						
PARAMETER	RESULT	DETECTION	REPORTING LIMIT	UNITS	TECH	DATE COMPLETED	
Iron (Fe)	0.05	Non-Detect	0.05	mg/L	Core Labs		
Manganese (Mn)	0.05	Non-Detect	0.05	mg/L	Core Labs		
Calcium	15.60			mg/L	HM	1/30/98	
Alkalinity - Total	213.00			mg/L	HM	1/30/98	
Alkalinity - Phen	11.00			mg/L	HM	1/30/98	
Total Hardness	58.00			mg/L	HM	1/30/98	
Sulfate	359.00			mg/L	CC	2/ 2/98	
Chloride	324.00			mg/L	CC	2/ 2/98	
TDS	1,410.00			mg/L		1/28/98	
Conductivity	2,370.00			uS/cm	HM	1/30/98	
pН	8.60			S.U.	HM	1/30/98	
Bicarbonate	233.00			mg/L	Cal		
Magnesium	4.62			mg/L	HM	1/30/98	
Sodium (Na)	410.00		20.00	mg/L	Core Labs		
Turbidity	0.07			NTU	HM	1/30/98	
							,

Project: Aquifer Stor	rage and Reco	very (ASR)	Repor	t Date: 2/25/98		
Sample IDDLY.CY1.	01	Sample Da	ite1/15/98	Date Received1/16/98	Sample LocationDel Mar Plant	Custody1708
Lab IDLAB-B		Sample Ti		Time Received1120	SamplerP. VanNoort	
		•			•	
LAB - B ANAI						
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	134.00	mg/L	CC	1/19/98		
Conductivity	1,089.00	uS/cm	HM	10/16/98		
pН	7.60	S.U.	HM	1/16/98		
Alkalinity - Total	120.00	mg/L	HM	1/16/98		
Alkalinity - Phen	0.00	mg/L	HM	1/16/98		
Total Hardness	298.00	mg/L	HM	1/16/98		
Turbidity	0.07	NTU	НМ	1/16/98		
Sample IDDLY.CY1.	02	Sample Da	ite1/16/98	Date Received1/16/98	Sample LocationDel Mar Plant	Custody1708
Lab IDLAB-B	02		me1105	Time Received1120	SamplerP. VanNoort	Custody1700
Duo ID.,,Dr ID-D		<u>Danpio III</u>	1105	11110 1100011001120	Danpetinininin . Tantoott	
LAB - B ANA	LYSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	133.00	mg/L	CC	1/19/98		
Conductivity	1,094.00	uS/cm	HM	1/16/98		
pH	7.60	S.U.	HM	1/16/98		
Alkalinity - Total	121.00	mg/L	HM	1/16/98		
Alkalinity - Phen	0.00	mg/L	HM	1/16/98		
Total Hardness	300.00	mg/L	HM	1/16/98		
Turbidity	0.07	NTU	HM	1/16/98		
Sample IDDLY.CY1.	03		te1/17/98	Date Received1/19/98	Sample Location,Del Mar Plant	<u>Custody</u> 1710
Lab IDLAB-B		Sample Tir	me1045	Time Received0925	SamplerP. VanNoort	
LAB-B ANA	LYSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	132.00	mg/L	CC	1/19/98		
Conductivity	1,107.00	uS/cm	JCM	1/19/98		
рН	7.60	S.U.	JCM	1/19/98		
Alkalinity - Total	120.00	mg/L	JCM	1/19/98		
Alkalinity - Phen	0.00	mg/L	JCM	1/19/98		
Total Hardness	279.00	mg/L	JCM	1/19/98		
Turbidity	0.24	NTU	JCM	1/19/98		

Project: Aquifer Storage and Recov	ery (ASR) Report Date: 2/25/98
------------------------------------	--------------------------------

Sample IDDLY.CY1.	<u> </u>	Sample Da	te1/18/98	Date Received1/19/08	Sample LocationDel Mar Plant	Custody1710
Lab IDLAB-B	.04	Sample Tir		Time Received0925	SamplerP. VanNoort	<u> </u>
<u> </u>		<u>Duniple I II</u>	110	Time Received	<u>bumpigi mamman</u> a . Yan toot	
LAB - B ANA	LYSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	128.00	mg/L	CC	1/19/98		
Conductivity	1,095.00	uS/cm	JCM	1/19/98		
pН	7.60	S.U.	JCM	1/19/98		
Alkalinity - Total	119.00	mg/L	JCM	1/19/98		
Alkalinity - Phen	0.00	mg/L	JCM	1/19/98		
Total Hardness	274.00	mg/L	JCM	1/19/98		
Turbidity	0.68	NTU	JCM	1/19/98		
Sample IDDLY.CY1.	05	Samula Da	te1/19/98	Date Received1/19/98	Sample LocationDel Mar Plant	Custody1710
Lab IDLAB-B	03	Sample Da		Time Received0925	SamplerP. VanNoort	Custody1710
Lau IDLAD-B		Sample III	<u>11¢</u> 0900	Time Received0923	Samplet	
LAB - B ANAI	LYSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	132.00	mg/L	CC	1/19/98		
Conductivity	1,099.00	uS/cm	JCM	1/19/98		
pН	7.60	S.U.	JCM	1/19/98		
Alkalinity - Total	118.00	mg/L	JCM	1/19/98		
Alkalinity - Phen	0.00	mg/L	JCM	1/19/98		
Total Hardness	300.00	mg/L	JCM	1/19/98		
Turbidity	0.21	NTU	JCM	1/19/98		
Sample ID,DLY.CY1.	06	Sample Da	te1/20/98	Date Received1/20/98	Sample LocationDel Mar Plant	Custody1711
Lab IDLAB-B		Sample Tir		Time Received1018	SamplerP. VanNoort	
,						
LAB - B ANAI						
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	137.00	mg/L	CC	1/26/98		
Conductivity	1,102.00	uS/cm	CC	1/20/98		
pН	7.60	<b>S.</b> U.	CC	1/20/98		
Alkalinity - Total	118.00	mg/L	CC	1/20/98		
Alkalinity - Phen	0.00	mg/L	CC	1/20/98		
Total Hardness	284.00	mg/L	CC	1/20/98		
Turbidity	0.26	NTU	CC	1/20/98		

Project: Aquifer Stor	rage and Reco	very (ASR)	Report	t Date: 2/25/98		
Sample IDDLY.CY1	07	Sample Da	te1/21/98	Date Received,1/21/98	Sample LocationDel Mar Plant	Custody1712
Lab IDLAB-B	.07	Sample Tir		Time Received0925	SamplerPorter/Salas	<u>Subtraction</u>
			<del></del>			
LAB-B ANA	LYSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	137.00	mg/L	CC	1/26/98		
Conductivity	1,114.00	uS/cm	HM	1/21/98		
pН	7.60	S.U.	HM	1/21/98		
Alkalinity - Total	124.00	mg/L	HM	1/21/98		
Alkalinity - Phen	0.00	mg/L	HM	1/21/98		
Total Hardness	290.00	mg/L	HM	1/21/98		
Turbidity	0.16	NTU	HM	1/21/98		
Sample IDDLY.CY1	08	Sample Da	te1/22/98	Date Received1/22/98	Sample LocationDel Mar Plant	Custody1713
Lab IDLAB-B	.00		ne0900	Time Received0920	SamplerPorter/Salas	<u>Custody</u> 1713
Edu IDDAD-D		<u>Sample Til</u>	<u>110</u> 0700	Time Received0720	<u>bumpror</u> or or out	
LAB-B ANA	LYSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	137.00	mg/L	CC	1/26/98		
Conductivity	1,112.00	uS/cm	CC	1/22/98		
pН	7.60	S.U.	CC	1/22/98		
Alkalinity - Total	117.00	mg/L	CC	1/22/98		
Alkalinity - Phen	0.00	mg/L	CC	1/22/98		
Total Hardness	290.00	mg/L	CC	1/22/98		
Turbidity	0.17	NTU	CC	1/22/98		
Sample IDDLY.CY1	.09	Sample Da	te1/23/98	Date Received1/26/98	Sample LocationDel Mar Plant	Custody1714
Lab IDLAB-B		Sample Tir		Time Received1031	SamplerPorter/Salas	<u> </u>
			<del></del>			
LAB - B ANA						
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	136.00	mg/L	CC	1/26/98		
Conductivity	1,120.00	uS/cm	CC	1/27/98		
pН	7.60	S.U.	CC	1/27/98		
Alkalinity - Total	122.00	mg/L	CC	1/27/98		
Alkalinity - Phen	0.00	mg/L	CC	1/27/98		
Total Hardness	284.00	mg/L	CC	1/27/98		
Turbidity	0.91	NTU	CC	1/27/98		

Sample IDDLY.CY1.	10	Sample Da	nte1/24/98	Date Received1/26/98	Sample LocationDel Mar Plant	<u>Custody</u> 1714
Lab IDLAB-B			me1225	Time Received1031	Sampler	<u>Custour</u>
		<del>-</del>				
LAB - B ANAI						
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	136.00	mg/L	CC	1/26/98		
Conductivity	1,206.00	uS/cm	CC	1/27/98		
рН	8.00	S.U.	CC	1/27/98		
Alkalinity - Total	147.00	mg/L	CC	1/27/98		
Alkalinity - Phen	0.00	mg/L	CC	1/27/98		
Total Hardness	148.00	mg/L	CC	1/27/98		
Turbidity	0.28	NTU	CC	1/27/98		
Sample IDDLY.CY1.	<u> </u>	Sample Da	ite1/25/98	Date Received1/26/98	Sample LocationDel Mar Plant	Custody1714
Lab IDLAB-B			me1305	Time Received1031	SamplerPorter/Salas	<u> </u>
* A D D A N A N A N A N A N A N A N A N A	TIONG					
LAB - B ANAI						
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	188.00	mg/L	CC	1/26/98		
Conductivity	1,491.00	uS/cm	CC	1/27/98		
рН	8.40	S.U.	CC	1/27/98		
Alkalinity - Total	160.00	mg/L	CC	1/27/98		
Alkalinity - Phen	5.00	mg/L	CC	1/27/98		
Total Hardness	88.00	mg/L	CC	1/27/98		
Turbidity	0.16	NTU	CC	1/27/98		
Sample IDDLY.CY1.	12	Sample Da	te1/26/98	Date Received1/26/98	Sample LocationDel Mar Plant	Custody1715
ab IDLAB-B		Sample Tir		Time Received1031	SamplerPorter/Salas	
LAB-B ANAI	YSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	202.00	mg/L	CC	1/26/98		
Conductivity	1,630.00	uS/cm	cc	1/27/98		
pH	8.50	S.U.	CC	1/27/98		
Alkalinity - Total	186.00	mg/L	CC	1/27/98		
Alkalinity - Phen	8.00	mg/L	cc	1/27/98		
Total Hardness	70.00	mg/L	cc	1/27/98		
LODGI DISTORESS	70.00	11112/1.	LA.	1/2 //98		

Project: Aquifer Stor	rage and Reco	very (ASR)	Report	t Date: 2/25/98		
Sample IDDLY.CY1.	13	Sample Da	te1/27/98	Date Received1/27/98	Sample LocationDel Mar Plant	Custody1716
Lab IDLAB-B	13	Sample Tir		Time Received1027	SamplerPortvial Train	<u> </u>
<u> </u>			110	AMILE CALLESTING	<u>Duniprovida</u>	
LAB - B ANAI	LYSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	230.00	mg/L	CC	2/ 2/98		
Conductivity	1,807.00	uS/cm	CC	1/27/98		
pН	8.60	S.U.	CC	1/27/98		
Alkalinity - Total	205.00	mg/L	CC	1/27/98		
Alkalinity - Phen	10.00	mg/L	CC	1/27/98		
Total Hardness	67.00	mg/L	CC	1/27/98		
Turbidity	0.18	NTU	CC	1/27/98		
Sample IDDLY.CY1.	14	Sample Da	te1/28/98	Date Received1/28/98	Sample LocationDel Mar Plant	Custody1717
Lab IDLAB-B	••	Sample Ti		Time Received1424	SamplerPorter/Salas	<u> </u>
LAB-B ANAL	LVSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	281.00	mg/L	CC	2/ 2/98		
Conductivity	2,060.00	uS/cm	HM	1/30/98		
рН	8.60	S.U.	HM	1/30/98		
Alkalinity - Total	211.00	mg/L	HM	1/30/98		
Alkalinity - Phen	13.00	mg/L	HM	1/30/98		
Total Hardness	62.00	mg/L	HM	1/30/98		
Turbidity	0.10	NTU	HM	1/30/98	·	
Sample IDDLY.CY1.	15	Sample Da	te1/29/98	Date Received1/29/98	Sample LocationDel Mar Plant	Custody1718
Lab IDLAB-B	15	Sample Tir		Time Received1040	SamplerPorter/Salas	<u>Custody</u> 1710
LAB - B ANAI	LYSES	Swiipie 11	<u></u> 2000	A.I.I.O 1223/12341111, 40 10	<u> Daniportiniii</u> Ottori Salas	

DATE COMPLETED

2/2/98

1/30/98 1/30/98

1/30/98

1/30/98

1/30/98

1/30/98

**PARAMETER** 

Conductivity

Alkalinity - Total

Alkalinity - Phen

**Total Hardness** 

Turbidity

Chloride

pН

**RESULT** 

300.00

217.00

11.00

59.00

0.07

8.60

2,230.00

UNITS

mg/L

S.U.

mg/L

mg/L

mg/L

NTU

uS/cm

TECH

CC

HM

CC

HM

HM

HM

CC

Project: Aquifer Storage and Recovery (ASR)

Sample IDDLY.CY1. Lab IDLAB-B	.16	Sample Da Sample Tir	te1/30/98 ne0930	Date Received1/30/98 Time Received1024	Sample LocationDel Mar Plant SamplerPorter/Salas	<u>Custody</u> 1719
LAB - B ANA	LYSES					
PARAMETER	RESULT	UNITS	TECH	DATE COMPLETED		
Chloride	326.00	mg/L	CC	2/ 2/98		
Conductivity	2,370.00	uS/cm	HM	1/30/98		
pН	8.60	S.U.	HM	1/30/98		
Alkalinity - Total	215.00	mg/L	HM	1/30/98		
Alkalinity - Phen	12.00	mg/L	HM	1/30/98		
Total Hardness	55.00	mg/L	HM	1/30/98		
Turbidity	0.18	NTU	HM	1/30/98		



## ANALYTICAL REPORT

JOB NUMBER: 980484

Prepared For:

City of Laredo P. O. Box 2950 Laredo, TX 78044

Attention: Adrian Montemayor

Date: 02/18/98

Color

Signature

Name: Charles Sassine

Title: Laboratory Supervisor

2/18/98

Date

1733 N. Padre Island Drive Corpus Christi, TX 78403

PHONE: 512/289-2673 FAX: 512/289-2471



SAMPLE INFORMATION Date: 02/18/98

Job Number.: 980484

Customer ..: City of Laredo Attn....: Adrian Montemayor Project Number....: 99999995

Customer Project ID...: LAREDO ASR DEL MAR Project Description...: Walk in Projects

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
980484-1	CYI.R.01	Water	01/23/98	13:40	02/06/98	08:00
980484-2	CYI.R.OZ	Water	01/23/98	16:20	02/06/98	08:00
980484-3	CY1.R.03	Water	01/25/98	13:08	02/06/98	08:00
980484-4	CY1.R.04	Water	01/26/98	16:25	02/06/98	08:00
980484-5	CYI.R.05	Water	01/27/98	09:50	02/06/98	08:00
980484-6	CYI.R.06	Water	01/28/98	14:05	02/06/98	08:00
980484-7	CYI.R.07	Water	01/29/98	10:00	02/06/98	08:00
980484-8	CY1.R.08	Water	01/30/98	09:30	02/06/98	08:00

upproving the moves of which the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the contraction of the



#### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 02/18/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

AITN: Adrian Montemayor

Customer Sample ID: CYI.R.01
Date Sampled....: 01/23/98
Time Sampled....: 13:40
Sample Matrix...: Water

Laboratory Sample ID: 980484-1 Date Received....: 02/06/98

Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	0.17	0.05	mg/L	02/17/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 6010B	Sodium (Na), Total	97	1	mg/L	02/17/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete			02/06/98	ah
	•	į				
		;				
				<u> </u>		
				}		
				1		
	(					
	}					



#### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 02/18/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Hontemayor

Customer Sample ID: CYI.R.02
Date Sampled.....: 01/23/98
Time Sampled.....: 16:20
Sample Matrix....: Water

Laboratory Sample ID: 980484-2 Date Received.....: 02/06/98 Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE TE
SW-846 6010B	Iron (Fe), Total	0.10	0.05	mg/L	02/17/98 gd
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	02/17/98 gd
SW-846 6010B	Sodium (Na), Total	96	1	mg/L	02/17/98 gd
SW-846 3015	Acid Digestion, Total Metals	Complete			02/06/98 at
			ŀ	1	
		ļ			
				ļ	
		·			
				1	
	}				



LABORATORY

TEST

RESULTS

Job Number: 980484

Date: 02/18/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: CYI.R.03 Date Sampled....: 01/25/98 Laboratory Sample ID: 980484-3 Date Received.....: 02/06/98

Time Sampled....: 13:08 Sample Matrix...: Water

Time Received.....: 08:00

TEST NETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 60108	Manganese (Mn), Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 60108	Sodium (Na), Total	21	1	mg/L	02/17/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete			02/06/98	ah
					į į	
	•	<u> </u>				
:						
				1		
				<u> </u>		
				<u> </u>	ļ	
į						

and the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of th



LABORATORY TEST RESULTS

Job Number: 980484

Date: 02/18/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTM: Adrian Montemayor

Customer Sample ID: CY1.R.04
Date Sampled.....: 01/26/98
Time Sampled.....: 16:25
Sample Matrix....: Water

Laboratory Sample ID: 980484-4 Date Received.....: 02/06/98 Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TEC
SW-846 6010B	Iron (Fe), Total	0.18	0.05	mg/L	02/17/98	ria.
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	02/17/98	İ
SW-846 6010B	Sodium (Na), Total	250	10	mg/L	02/17/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete			02/06/98	ah
			ļ		•	
			<u>.</u>			
}						
					j	
	• .					
				<u> </u>		

er for the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the secon



LABORATORY

TEST

RESULTS

Job Number: 980484

Date: 02/18/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: CYI.R.05
Date Sampled....: 01/27/98
Time Sampled....: 09:50
Sample Matrix...: Water

Laboratory Sample ID: 980484-5 Date Received.....: 02/06/98

Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 6010B	Sodium (Na), Total	260	10	mg/L	02/17/98	gcc
sw-846 3015	Acid Digestion, Total Metals	Complete			02/06/98	ah
				,		
	· ·					ļ
			j	}		
				į		
				Ì		
		ļ				
		<b>\</b>				
		,				

groups to a purpose that we will be a considered the proposed of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of the construction of t



LABORATORY

TEST

RESULTS

Job Number: 980484

Date: 02/18/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: CYI.R.06
Date Sampled.....: 01/28/98
Time Sampled.....: 14:05
Sample Matrix....: Water

Laboratory Sample ID: 980484-6 Date Received.....: 02/06/98 Time Received.....: 08:00

TEST NETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	0.06	0.05	mg/L	02/17/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	Mg/L	02/17/98	gcc
SW-846 6010B	Sodium (Na), Total	350	10	mg/L	02/17/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete			02/06/98	ah
			ļ			
					<u> </u>	
ļ						
1						
					:	
	·					
	·			1		



#### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 02/18/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: CYI.R.07
Date Sampled.....: 01/29/98
Time Sampled.....: 10:00
Sample Matrix....: Water

Laboratory Sample ID: 980484-7
Date Received.....: 02/06/98
Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 6010B	Manganese (Mn); Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 6010B	Sodium (Na), Total	380	10	mg/L	02/17/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete	[		02/06/98	ah
		<u> </u>	]			
	·		1			
					<u> </u>	
•						
				:		
	·					
				}		
1	1	J	1	1	1	1



#### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 02/18/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: CYI.R.08
Date Sampled.....: 01/30/98
Time Sampled.....: 09:30
Sample Matrix....: Water

Laboratory Sample ID: 980484-8
Date Received.....: 02/06/98
Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	units _{a.}	DATE	TEC
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	02/17/98	gcc
SW-846 60108	Sodium (Na), Total	410	20	mg/L	02/17/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete			02/06/98	ah
	j					
				<u> </u>		
		İ				
•						
<u> </u> 						
				1		
				1		
		İ		1	}	1

LABORATORY TEST RESULTS

Job Number: 980696 Date: 02/25/98

CUSTOMER; City of Laredo PROJECT: ATTE: Admien Montensyon

Customer Sample | D: CY1.1.04
Date Sampled....: 01/21/98
Time Sampled....: 09:00
Sample Matrix...: Water

Laboratory Sample ID: 980696-1 Date Received.....: 02/21/98 Time Received.....: 11:10

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TEC
SH-846 6010B	Iron (Fm), Total	<0.05	0.05	mg/L	02/24/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	02/24/98	gce
SW-846 6010B	Sodium (Na), Total	107	1	mg/L	02/24/98	gec
sw-846 3015	Acid Digestion, Total Metals	Complete			02/24/98	ah
			il:			
					1	
				ļ		
				<u> </u>	1	
				1		
					1	
				1		



#### ANALYTICAL REPORT

JOB NUMBER: 980220

Prepared For:

City of Laredo P. O. Box 2950 Laredo, TX 78044

Attention: Adrian Montemayor

Date: 01/28/98

Signature

Name: Chip Meador

Title: Regional Manager

Date

1733 N. Padre Island Drive Corpus Christi, TX 78403

PHONE: 512/289-2673 FAX: 512/289-2471



SAMPLE INFORMATION Date: 01/28/98

Job Number .: 980220

Customer ..: City of Laredo Attn....: Adrian Montemayor

Project Number..... 99999995 Customer Project ID...: LAREDO ASR DEL MAR Project Description...: Walk in Projects

Laboratory Sample ID	Customer Sample ID	Sample Matrix	Date Sampled	Time Sampled	Date Received	Time Received
980220-1	SD.1.01-A	Water	01/14/98	14:30	01/20/98	08:00
980220-2	SD.I.02-A	Water	01/14/98	16:15	01/20/98	08:00
980220-3	SD.R.01-A	Water	01/14/98	17:00	01/20/98	08:00
980220-4	SD_R_02-A	Water	01/14/98	17:30	01/20/98	08:00
980220-5	SD.R.03-A	Water	01/14/98	18:30	01/20/98	08:00
980220-6	CY1.I.01-A	Water	01/15/98	13:45	01/20/98	08:00
980220-7	CY1.I.02-A	Water	01/17/98	10:45	01/20/98	08:00
980220-8	CY1.1.03-A	Water	01/19/98	09:00	01/20/98	08:00
	*-	·		1		
		ı				
			!		r	
						!
					į	
ļ						
i i						
					<u> </u>	
					<u> </u>	ļ
		` .				
						}
				}		



#### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 01/28/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: SD.I.01-A
Date Sampled.....: 01/14/98
Time Sampled.....: 14:30
Sample Matrix....: Water

Laboratory Sample ID: 980220-1 Date Received.....: 01/20/98 Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Sodium (Na), Total	99	1	mg/L	01/27/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete	<b></b>		01/21/98	ah
	Į.					
	·				}	
				i		
		}	<u> </u> 	Ì		
	İ					
			1			
					ļ	
			}			
			i I	<u> </u> 	1	
		!	1			
				!		
• •						
	·			1		
1						

Security of the Latin Control of Chapman devict sold is with 600% for the bringuist of Conget green to Control Court



#### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 01/28/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTW: Adrian Montemayor

Customer Sample ID: SD.I.02-A Date Sampled....: 01/14/98 Time Sampled....: 16:15

Laboratory Sample ID: 980220-2 Date Received....: 01/20/98 Time Received....: 08:00

Sample Matrix....: Water

TEST NETHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	INTES	DATE	TE
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	01/27/98	gc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	01/27/98	gc
SW-846 6010B	Sodium (Na), Total	103	1	mg/L	01/27/98	gc:
SW-846 3015	Acid Digestion, Total Metals	Complete			01/21/98	ah
		]				
	•					
l İ						
				i I		
					1	
					1	
l.			}			
	·					
		Ì			-	
				j		
					İ	
			į			
	}					



LABORATORY

TEST

RESULTS

Job Number: 980220

Date: 01/28/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: SD.R.01-A
Date Sampled....: 01/14/98
Time Sampled....: 17:00
Sample Matrix...: Water

Laboratory Sample ID: 980220-3
Date Received.....: 01/20/98
Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	0.99	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Sodium (Na), Total	143	1 1	mg/L	01/27/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete			01/21/98	ah
		}				
		<u> </u>		į		
	·	{		İ		}
						}
						<u> </u>
					ļ	
		1				}
						ļ
				<u> </u>		}
	· .			•		
	, in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second					
					}	
				\$		
1		I	ļ.	1		1

under de particular de la material de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie de la companie d



#### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 01/28/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: SD.R.02-A
Date Sampled....: 01/14/98
Time Sampled....: 17:30
Sample Matrix....: Water

Laboratory Sample ID: 980220-4
Date Received.....: 01/20/98
Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TEC
SW-846 6010B	Iron (Fe), Total	0.20	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	01/27/98	gco
SW-846 6010B	Sodium (Na), Total	255	5	mg/L	01/27/98	gco
sw-846 3015	Acid Digestion, Total Metals	Complete			01/21/98	ah
				}		
	•				ļ	
					1	
					1	
		ł				
ļ						
						}
					ļ	
<u> </u> 						
					Ì	
					}	
,						
		}				
					ļ ļ	
			1	1	1	ļ



LABORATORY TEST RESULTS

Job Number: 980220

Date: 01/28/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: SD.R.03-A Date Sampled....: 01/14/98 Time Sampled....: 18:30 Sample Matrix....: Water

Laboratory Sample ID: 980220-5 Date Received.....: 01/20/98 Time Received.....: 08:00

						_
TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	0.16	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Sodium (Na), Total	500	10	mg/L	01/27/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete		!	01/21/98	ah
						İ
			;			ļ
				}		
	· .					
		İ				
1	1	i	ł .	1	1	1



#### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 01/28/98

The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Laboratory Sample ID: 980220-6 Date Received.....: 01/20/98 Time Received.....: 08:00

Customer Sample ID: CY1.I.01-A Date Sampled....: 01/15/98 Time Sampled....: 13:45 Sample Matrix....: Water

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TE
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	01/27/98	gc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	01/27/98	gcı
SW-846 6010B	Sodium (Na), Total	105	1	mg/L	01/27/98	gc
SW-846 3015	Acid Digestion, Total Metals	Complete			01/21/98	ah
				1		
				İ		
:						
1						
					j	
			1		}	
		•				
	·					
ĺ			1	1	1	



Job Number: 980220

### **CORE LABORATORIES**

LABORATORY

TEST

RESULTS

Date: 01/28/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: CY1.I.02-A
Date Sampled.....: 01/17/98
Time Sampled.....: 10:45
Sample Matrix....: Water

Laboratory Sample ID: 980220-7 Date Received.....: 01/20/98 Time Received.....: 08:00

TEST METHOD	PÄRAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TECH
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	01/27/98	gcc
SW-846 6010B	Sodium (Na), Total	106	1	mg/L	01/27/98	gcc
SW-846 3015	Acid Digestion, Total Metals	Complete			01/21/98	ah
	·			ļ		
			}			
				<u> </u>		
				}		
				}		
				1		
				}		
I						
		}	1			



### **CORE LABORATORIES**

LABORATORY TEST RESULTS

Job Number: 980220

Date: 01/28/98

CUSTOMER: City of Laredo

PROJECT: LAREDO ASR DEL MAR

ATTN: Adrian Montemayor

Customer Sample ID: CY1.I.03-A
Date Sampled....: 01/19/98
Time Sampled....: 09:00
Sample Matrix...: Water

Laboratory Sample ID: 980220-8
Date Received.....: 01/20/98
Time Received.....: 08:00

TEST METHOD	PARAMETER/TEST DESCRIPTION	SAMPLE RESULT	REPORTING LIMIT	UNITS	DATE	TI
SW-846 6010B	Iron (Fe), Total	<0.05	0.05	mg/L	01/27/98	gı
SW-846 6010B	Manganese (Mn), Total	<0.05	0.05	mg/L	01/27/98	g
SW-846 6010B	Sodium (Na), Total	105	1	mg/L	01/27/98	g
SW-846 3015	Acid Digestion, Total Metals	Complete			01/21/98	ai
				<b> </b> 		
	• .		,			
				-		

### **CORE ANALYSIS RESULTS**

CH2M HILL, INC. LAREDO ASR; WELL TW-2A PROJECT # 118069

Mineralogy, Inc. Job No.: 97-288



3228 East 15th Street / Tulsa, Oklahoma 74104-5252 / (918) 744-8284 / FAX 743-7460 Where Science Gets Down to Earth

August 11, 1997

Mr. Peter VanNoort CH2M Hill, Inc. 5339 Alpha Rd. Suite 300 Dallas, TX 75240-7352

RE: Core Analysis Results

CH2M Hill, Inc.; Laredo ASR - Well TW-2A; Project No.: 118069

Mineralogy, Inc. Job No.: 97-288

#### Gentlemen:

The following report provides the final results of a series of laboratory analyses performed on three selected intervals from the above captioned well. The core intervals examined in this reservoir study include: core # C-2 (292.05 - 293.4 ft.), core # C-3 (330.0 - 330.95 ft.) and core # C-7 (400.65 - 401.9 ft.). Analytical procedures include: x-ray diffraction analysis, macroscopic sedimentological analysis (core description), thin section petrographic analysis, scanning electron microscopy (SEM analysis), routine core analysis (helium porosity, air permeability and grain density), cation exchange capacity - leachate analysis (CEC), acid insoluble residue analysis, specific gravity analysis and laser particle size analysis. The results of these various analytical procedures are summarized and described in the report text, with an interpretive emphasis which addresses those mineralogical and petrophysical properties which directly influence the reservoir quality of this aquifer.

It is our hope that these results will contribute to an understanding of the rock properties characterizing these intervals and thereby promote the successful utilization and development of this aquifer. The conditions under which this report is presented are summarized immediately following this letter. If you should have any questions regarding these results, or if we can be of further service, please don't hesitate to call.

Sincerely,

Timothy B. Murphy, President

Mineralogy, Inc.

#### II. CONDITIONS AND QUALIFICATIONS

Mineralogy, Inc. will endeavor to provide accurate and reliable laboratory measurements of the samples provided by the client. The results of any x-ray diffraction, petrographic or core analysis test are necessarily influenced by the condition and selection of the samples to be analyzed. It should be recognized that mineralogical samples are commonly heterogeneous and lack uniform properties. Unless otherwise directed, the samples selected for analysis will be chosen to reflect a visually representative portion of the bulk sample submitted for analysis. Where provided, the interpretation of x-ray diffraction, petrographic or core analysis results constitutes the best geological judgement of Mineralogy, Inc., and is subject to the sampling limitations described above, and detection limits inherent to semi-quantitative mineralogical analysis. Mineralogy, Inc. assumes no responsibility nor offers any guarantee of the productivity or performance of any oil or gas well or hydrocarbon recovery process, based upon the data presented in this report.

<del>, - -</del>

: }

Man and the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state

#### SUMMARY

The three cores analyzed from the TW-2A well display striking similarities with one another with respect to mineralogy, texture and reservoir quality. Each of these sandstones is described as very fine-grained, very well sorted, porous and permeable, glauconitic, sublitharenitic sandstone. The detrital framework of these sandstones is mildly to moderately compacted, weakly cemented and friable. The cores display a low angle cross-bedded to ripple-bedded sedimentary fabric, locally accentuated by a few scattered lenses and lamina of thin detrital clay matrix. Portions of core # C-7 display a massively bedded fabric, with irregular lobe-shaped concentrations of infiltrated detrital clay, suggesting the possibility of limited amounts of bioturbation. Helium porosity values range between 30.2 - 32.1%, with horizontal permeabilities between 631 - 809 md. The sandstones display a quartz-rich mineralogy, with moderate volumes of clay matrix minerals (9%) and feldspar (2 - 3%). The bulk of the clay is present as intragranular matrix within glauconite pellets and sedimentary mudstone and shale clasts. These ductile grain types are locally deformed and squashed due to mechanical compaction between adjoining brittle framework grains, resulting in scattered concentrations of pseudomatrix. The clay mineralogy is dominated by mixed-layer illite/smectite and relatively minor volumes of chlorite and illite. Kaolinite is present as an accessory clay mineral constituent. The sandstones are weakly cemented with authigenic quartz, which occurs as weakly developed syntaxial overgrowths nucleated on the detrital quartz grains. Calcite, dolomite, ferroan dolomite, pyrite and siderite are also locally present as accessory cement constituents.

The sandstones from these aquifer intervals should prove to be excellent reservoir rocks in terms of their overall reservoir quality and relatively low susceptibility to formation damage. The clay matrix phases present within these sandstones are generally concentrated with lithic fragments, glauconite pellets and patches of pseudomatrix, with relatively minor volumes of grain-coating chlorite irregularly distributed throughout the sandstone framework. Minor amounts of pseudomatrix have been mobilized within the pore network, resulting in scattered occurrences of matrix occluded pore throats due to "brush-piling" of fines. The few irregular lenses and lamina of detrital matrix (especially concentrated within portions of core # C-3) have locally contributed to a reduction of the vertical permeability, however, the abundance and interconnected nature of the pore network is expressed by consistently high horizontal flow capacity within each of these sandstones. The mixed-layer illite/smectite is moderately expansive, with illite layers accounting for roughly half of the clay layers within this hybrid clay species. The smectite inter-layers are susceptible to expansion, especially in the event of sharp changes in the pore fluid salinity, however, assuming a constant hydration state with relatively constant salinity values, the potential for formation damage related to the volumetric expansion of these clays should be minimal.

#### TABLE I. X-RAY DIFFRACTION MINERALOGICAL ANALYSIS

The results of the x-ray diffraction mineralogical analysis are summarized on Table I. These cores are strikingly similar with respect to mineralogy, displaying a rather homogenous mineral suite dominated by quartz (88-89%), clay matrix minerals (9%) and feldspar (plagioclase [1-2%] and k-feldspar [1%] varieties). The clay mineral suite (< 2 micrometer) is dominated by mixed-layer illite/smectite (6-7%) and chlorite (2%), with minor to accessory amounts of illite/mica (trc - 1%) and kaolinite (trc). The mixed-layer illite/smectite is moderately expansive and is characterized by subequal volumes of illite and smectite interlayers (estimated 40 - 55% illite layers). Accessory (or trace) mineral phases detected within one or more of the sandstone samples include: calcite, ferroan dolomite (+ dolomite), gypsum and pyrite.

# TABLE II. ROUTINE CORE ANALYSIS (Helium Porosity, Air Permeability & Grain Density)

The results of the routine core analysis test suite are provided on Table II. One inch diameter core plugs drilled from the core intervals displayed comparable values of helium porosity (30.2 - 32.1%), horizontal permeability (631 - 809 md.) and grain density (2.63 g/cc). The vertical permeability values measured for these plug samples were somewhat more variable, with core # C-3 displaying a significant decline in flow capacity relative to the horizontal permeability value for this sandstone. These data reflect the localized presence of detrital matrix lenses and lamina within core # C-3 (330.65 ft.; 207 md.). Vertical permeability values for core C-2 (292.5 ft.; 729 md.) and core C-7 (401.3 ft.; 749 md.) were only slightly lower than the measured values for horizontal flow within these sandstone intervals, reflecting excellent inter-connectivity of the pore network oriented perpendicular to the bedding planes.

## TABLE III. CATION EXCHANGE CAPACITY - LEACHATE ANALYSIS

Cation exchange capacity measurements for these sandstones are summarized in Table III. Total CEC values (representing the sum of CEC data for each ionic species measured for a given sandstone) range between 3.86 - 9.48 meq/100g of core material. The sandstones within cores C-2 and C-7 are quite similar with respect to the relative hierarchy of exchangeable cationic species (Ca>K>Mg>Na). Core C-3 displays a somewhat modified cation sequence, characterized by a significantly reduced CEC value for Ca (0.9 meq/100g), and a total CEC value which is the lowest value measured for these three core samples. The relative hierarchy of exchangeable cation species for core C-3 is K>Ca>Mg>Na.

#### TABLE IV AND TABLE V. SPECIFIC GRAVITY ANALYSIS and ACID INSOLUBLE RESIDUE ANALYSIS

The results of the specific gravity analysis are summarized on Table IV, while the acid insoluble residue data is presented in Table V. The specific gravity values measured for the sandstones range between 2.49 - 2.51 g/cc. These data are somewhat lower than the grain density measurements obtained via the helium porosity analysis (2.63 g/cc; see Table II). The discrepancy is probably related to the incomplete water saturation of micropores associated with the glauconite pellets and lithic mudstone and shale fragments contained in the detrital assemblage of these sandstones. The acid insoluble residue data presented on Table V, range between 98.4 - 98.8%, indicating the presence of minor volumes of acid soluble mineral species (predominantly calcite, ferroan dolomite, dolomite and/or siderite).

## SEDIMENTOLOGICAL ANALYSIS RESULTS and RESERVOIR OUALITY

The sedimentological analysis of these cores consists of macroscopic core description, thin section petrography, scanning electron microscopy and laser particle size analysis. Given the inter-dependence of the data sets from each of these analyses and their respective influence on reservoir quality, the results of these assessments have been presented sequentially for each of the core samples. This presentation will hopefully afford the reader with an integrated view of the sedimentology for each of the sandstone intervals from this aquifer. The following discussion provides an interpretive focus on the sedimentological factors which influence the reservoir quality of these aquifer intervals. The similarity of these sandstones with respect to mineralogy, framework composition, cement constituents, clay matrix components and texture allow for a general overview of the clastic sedimentology.

The sandstone cores from this suite of aquifer intervals display a similar character with respect to current-induced bedding features. Low angle cross-bedding is the dominant bed-form present, with fore-set dips commonly ranging from 5 - 15 degrees relative to the horizontal. Some evidence of ripple bedding is present, especially within the relatively finest sand-sized fractions of core C-3 (330 - 330.95'). Minor evidence of clay matrix infiltration is present, especially within cores C-3 (330.0 - 330.95') and C-7 (400.65 - 401.9'), typically occurring as subtle, lenticular to laminar concentrations of clay-rich sand (with traces of silt) draping selected rippled cross-bed sets. Core C-7 displays a subtly massive subinterval which contains a few scattered lobe-shaped concentrations of clay matrix, suggestive of minor burrow mottling.

Examination of the thin sections and SEM mounts prepared from these core samples reveals a detrital mineralogy which is dominated by monocrystalline quartz, together with significant volumes of glauconite pellets, sedimentary shale and mudstone clasts and feldspar grains. Minor to accessory grain types include volcanic rock fragments (VRF's), chert, mica, hornblende, metamorphic RF's, magnetite, carbonized woody plant fragments and residue and epidote. The grain constituents are generally mildly compacted, typically displaying a predominance of point-to-point and elongated intergranular contacts. The ductile framework grains are locally deformed due to compression between adjoining brittle grains (generally quartz and/or feldspar), locally yielding pseudomatrix. The term pseudomatrix, as applied here, is defined as pore-filling clay matrix derived from a matrix-rich, lithic grain source, which has been compressed and deformed to result in the injection of clay matrix into the adjoining intergranular pores. The relative abundance of ductile grain constituents (especially glauconite and mudstone RF's) within these sandstones has contributed to the localized presence of plastically deformed and deeply embayed ductile grain boundaries and scattered patches of pseudomatrix.

These sandstones are rather weakly cemented with a combination of authigenic quartz overgrowths, and traces of carbonate minerals (calcite +/- dolomite +/- ferroan dolomite +/- siderite). The quartz overgrowths are the most significant cement constituents, occurring as weakly developed syntaxial rims and nodules flanking the detrital quartz grains. It is largely the quartz cement that accounts for the weakly lithified character of these sandstone intervals. Quartz overgrowth cement is visually estimated to account for approximately 2 - 4% of the bulk volume. Traces of iron oxide and pyrite cement are also locally present, with the pyrite typically occurring as a microcrystalline replacement for scattered patches and lenses of organic matter (woody plant fragments?).

As described above, much of the clay present within these sandstones is present as intragranular matrix within the glauconite pellets and matrix-rich SRF's (shale and mudstone particles), and as scattered patches of pseudomatrix (derived from these matrix-rich grain sources). Additionally, clay matrix minerals are present as replacements for leached and altered detrital grains (especially feldspar and VRF's), as localized lenses and lamina of detrital clay matrix, and as irregularly distributed grain-coating / pore-lining matrix. The detrital matrix lenses and lamina are most commonly expressed as

concentrations of infiltrated matrix admixed with sand and traces of quartz-rich silt. This description is also valid for the lobe-shaped, irregular concentrations of clay detected within core C-7 (401.3 ft.) which have been tentatively attributed to the mixing influence of burrowing organisms soon after deposition. The grain-coating and pore-lining clay is generally comprised of chlorite, which appears as a firmly attached, inter-connected network of clay crystallites, arranged in a characteristic "edge to face" configuration on the detrital grain surfaces. At sufficiently high magnification (generally > 2000 X), the grain-coating chlorite commonly resembles a honey-comb morphology, and is characterized by an extremely high ratio of surface area to mass.

The macropore network within these sandstones is comprised of very well preserved (and inter-connected) intergranular voids and subordinate amounts of secondary porosity (intragranular dissolution voids and grain-moldic pores). The primary or intergranular pores are estimated to display average pore diameters which range between 0.25 - 0.35mm (approximately 1/4 - 1/3 the mean grain diameter), supporting excellent fluid communication throughout the pore system. The secondary pores are present due to the partial to complete dissolution of metastable grain constituents (especially feldspar, VRF's, and less commonly amphibole grains). The pore volumes calculated from the helium porosity analysis are consistent with estimated porosity values obtained from the thin section samples. Intercrystalline microporosity is present in association with the matrix-rich detrital grains (especially glauconite), and may account for as much as 2 - 4% of the reported storage capacity within these sandstones.

## TABLE I. X-RAY DIFFRACTION MINERALOGICAL ANALYSIS

CH2M Hill, Inc. Laredo ASR; TW-2A Project No.: 118069

Mineralogy, Inc. Job No.: 97-288

Core No. Depth (ft.)	C-2 <u>292.5</u>	C-3 <u>330.65</u>	C-7 <u>401.3</u>			
MINERAL CONSTITUENTS	RELATIVE ABUNDANCE (%)					
Quartz	88	89	89			
Plagioclase Feldspar	2	1	1			
K-Feldspar	1	1	1			
Calcite	trc		trc			
Ferroan Dolomite	trc	trc				
Gypsum		trc				
Pyrite	trc	trc	trc			
Kaolinite	trc	trc	trc			
Chlorite	2	2	2			
Illite/Mica	trc	trc	1			
Mixed-Layer Illite/Smectite	7	7	6			
% Illite Layers in M.L.Illite/Smectite	45-55%	40-50%	45-55%			
TOTAL	100	100	100			

# TABLE II. ROUTINE CORE ANALYSIS RESULTS

CH2M Hill, Inc. Laredo ASR; TW-2A Project No.: 118069

Mineralogy, Inc. Job No.: 97-288

	AIR PERM	EABILITY	Helium	Grain	
CORE # / DEPTH (ft.)	Horizontal <u>(md)</u>	Vertical <u>(md)</u>	Porosity <u>(%)</u>	Density <u>(g/cc)</u>	
C-2 / 292.5	761	729	30.2	2.63	
C-3 / 330.65	631	207	32.1	2.63	
C-7 / 401.3	809	749	30.4	2.63	

## TABLE III. CATION EXCHANGE CAPACITY - LEACHATE ANALYSIS

CH2M Hill, Inc. Laredo ASR; TW-2A Project No.: 118069

Mineralogy, Inc. Job No.: 97-288

**CEC Leachate Analysis** 

		CEC Leachate Analysis								
	<u>Calcium</u>		<u>Magn</u>	esium	<u>Potas</u>	sium	<u>Sodium</u>			
	<u>Results</u>	PQL*	<u>Results</u>	PQL*	<u>Results</u>	PQL*	<u>Results</u>	<u>PQL*</u>		
CORE # / DEPTH (ft.)	<u>(meg/100g)</u>	<u>(mea/100a)</u>	<u>(meg/100g)</u>	<u>(meg/100g)</u>	<u>(meg/100a)</u>	<u>(meg/100g)</u>	<u>(meq/100g)</u>	<u>(meq/100g)</u>		
C-2 / 292.5	6.4	0.04	0.8	0.01	1.9	0.01	0.38	0.0013		
C-3 / 330.65	0.9	0.005	0.77	0.01	1.7	0.01	0.5	0.0064		
C-7 / 401.3	4.8	0.04	0.6	0.01	1.6	0.01	0.24	0.0013		

Method Reference: 40 CFR 136, 261, Method for Chemical Analysis of Water and Waste EPA-600/4-79-020 March 1983 CEC Method Reference: Methods of Soil Analysis, Chemical and Microbiological Properties, 2nd Ed.; American Society of Agronomy, Inc., Soil Science Society of America, Inc., page 160.

^{*} PQL = Practical Quantitation Limit

# TABLE IV. SPECIFIC GRAVITY ANALYSIS

CH2M Hill, Inc. Laredo ASR; TW-2A Project No.: 118069

Mineralogy, Inc. Job No.: 97-288

CORE # / DEPTH (ft.)	SPECIFIC GRAVITY (g/cc)
C-2 / 292.5	2.53
C-3 / 330.65	2.49
C-7 / 401.3	2.51

# TABLE V. ACID INSOLUBLE RESIDUE ANALYSIS

CH2M Hill, Inc. Laredo ASR; TW-2A Project No.: 118069

Mineralogy, Inc. Job No.: 97-288

CORE # / DEPTH (ft.)	ACID RESIDUE <u>(%)</u>
C-2 / 292.5	98.4
C-3 / 330.65	98.8
C-7 / 401.3	98.4

### CH2M HILL, INC. LAREDO ASR; WELL TW-2A PROJECT # 118069

CORE NO. C-2; 292.05 - 293.4 ft.

MACROSCOPIC CORE DESCRIPTION, THIN SECTION PETROGRAPHY, SCANNING ELECTRON MICROSCOPY and LASER PARTICLE SIZE ANALYSIS RESULTS



#### MACROSCOPIC CORE DESCRIPTION

CH2M Hill, Inc. Laredo ASR; TW-2A; Project No.: 118069

Core No.: C-2; 292.05 - 293.4 ft.

Mineralogy, Inc. Job No.: 97-288-01

A light gray, very fine-grained, very well sorted, weakly consolidated, friable, low angle cross-bedded, porous and permeable sublitharenitic sandstone. The cross bed sets display fore-set dips which range from approximately 5-15 degrees throughout the bulk of the interval. The interval between approximately 292.4 - 292.75 ft. is characterized by relatively steeply dipping fore-set lamina (approximately 35-45 degrees), with some evidence of slumping. The sandstone framework is glauconitic throughout the interval, with pelletal grains displaying a light to medium green appearance at low magnification. Traces of calcite and dolomite cement are present as widely scattered patches of intergranular cement. The principal stabilizing force within this weakly consolidated and friable sandstone appears to be pseudomatrix derived from mechanically deformed glauconite pellets coupled with minor quartz overgrowth cement. Intergranular porosity is evenly distributed throughout the interval and appears well interconnected given the small volumes of intergranular clay and cement constituents.

#### PETROGRAPHIC ANALYSIS

CLIENT: CH2M Hill, Inc.

PROJECT IDENTIFICATION / WELL: Laredo ASR - TW-2A; #118069

CORE NO. / DEPTH (ft.):

#C-2 / 292.5 ft.

MINERALOGY, INC. JOB NO:

97-288-01

LITHOLOGY:

Porous, Glauconitic, Sublitharenitic Sandstone

CLASTIC TEXTURE (mm):

Mean = 0.11

Max = 0.68

PORE DIAMETER (mm):

Mean = 0.035

**HELIUM POROSITY:** 

30.2%

AIR PERMEABILITY (Horiz):

761 md

FABRIC / TEXTURE: This core sample is comprised of very fine-grained, very well sorted, slightly calcareous and glauconite-rich, sublitharenitic sandstone. The depositional fabric is mildly compacted and displays common point-to-point and elongated intergranular contacts. Pseudomatrix is locally present due to the compression and injection of clay derived from glauconite pellets and matrix-rich SRF's into the adjoining pore spaces. The sandstone fabric is porous (30.2%) and permeable (Kh=761 md.) and displays a well interconnected intergranular pore network. The sandstone is best described as very weakly consolidated and friable.

FRAMEWORK COMPONENTS: Detrital grain types included within this core sample are listed below, in order of decreasing relative abundance:

Quartz, Monocrystalline quartz and minor polycrystalline quartz varieties.

Glauconite; Locally deformed due to compaction - comprised of light to dark greenmicrocrystalline clay matrix minerals (chiefly mixed-layer illite/smectite, illite and chlorite).

Sedimentary Rock Fragments (SRF's); Shale and mudstone clasts - typically laminated and locally silty

Feldspar; Plagioclase + k-feldspar locally leached and replaced with clay matrix with common intragranular dissolution porosity.

Volcanic Rock Fragments (VRF's); Extensively matrix-replaced - VRF's typically display a glassy groundmass with randomly oriented laths of altered plagioclase feldspar.

Muscovite and biotite mica, amphibole (basaltic hornblende), metamorphic RF's and magnetite are present as accessory constituents.

MATRIX / CEMENTS: Traces of carbonate cement are locally scattered within the pore network as patches of finely crystalline calcite, dolomite, siderite(?) and ferroan dolomite. Traces of quartz overgrowth cement are present on scattered quartz grains as weakly developed syntaxial rims and nodules. Iron oxide cement and pyrite are present as accessory cement varieties. Clay is present throughout the framework as a primary constituent within the glauconite pellets and SRF's, as scattered patches of microporous pore-filling matrix (mostly pseudomatrix derived from squashed glauconite) and as grain-coating matrix which is locally concentrated within the intergranular pore throats. The clay mineralogy is dominated by mixed-layer illite/smectite and chlorite, together with minor amounts of illite and kaolinite.

PORE SYSTEM: Macropore types present within this sandstone include intergranular voids and secondary intragranular and grain-moldic dissolution pores. The intergranular pore network is very well preserved and interconnected, given the paucity of intergranular cements and pore-filling clays. Secondary voids are present throughout the sandstone framework due to the partial to complete dissolution of feldspar grains and metastable RF's. Secondary void space is visually estimated to account for approximately 2 - 4% of the bulk volume. Intercrystalline microporosity is present in association with the matrix-rich glauconite pellets and the scattered patches of pore-filling pseudomatrix. Some constrictions of the pore throat apertures are apparent due to the concentration of grain-coating clay and the localized "brush-piling" of matrix clusters, however, the impact of these factors on overall reservoir quality for this interval is interpreted as minimal.



Figure A. A low magnification view illustrating the porous character of this weakly consolidated, glauconite-rich, sublitharenitic sandstone. The dark green colored grains distributed throughout this field of view are comprised of glauconite pellets admixed with minor amounts of shale and mudstone clasts.

16X uncrossed nicols 1.25"=2.0mm

CH2M Hill, Inc.; Laredo ASR; TW-2A; Project # 118069; Core C-2; 292.5 ft.

Mineralogy, Inc. Job # 97-288-01

Figure B. A detailed view of the micro-texture of the glauconite pellets (e.g., center-left) contained within this sandstone. These grains are comprised almost exclusively of clay matrix minerals (mixed-layer illite/smectite + chlorite). Note the marginally deformed character of the pellet on the left. Also note the intragranular dissolution porosity and the grain-coating chlorite in the extreme lower-right of this field of view. 100X crossed nicols 1"=0.25mm



#### SCANNING ELECTRON MICROSCOPY

CH2M Hill, Inc. Laredo ASR; TW-2A; Project No.: 118069

Core No.: C-2; 292.5 ft.

Mineralogy, Inc. Job No.: 97-288-01

#### A&B

Low and high magnification SEM views illustrating a concentration of pseudomatrix derived from a squashed glauconite pellet (center, Figure A & Figure B). Note the patch of pore-filling carbonate cement (upper left; Figure A) and the microcrystalline crust of matrix coating several of the grain surfaces throughout Figure A (e.g., center and upper-right). Figure B provides a detailed view of the deformed glauconite pellet, revealing a composition dominated by matted laths of mixed-layer illite/smectite. The intragranular void at the center of Figure B contains a few relatively large, pseudo-hexagonal clay platelets which are tentatively identified as kaolinite.

#### C & D

This sand sample is characterized by an abundance of intergranular porosity as depicted in Figure C. The grains are locally encrusted with chlorite clay, which displays an "edge to face" crystalline morphology which is especially visible on the detrital grain in the lower right quadrant of Figure D. Note the unattached clusters off matrix (illite?) occupying the pore in the bottom-center of Figure D. Unlike the grain-coating chlorite which is firmly attached to the grain surface, these pore-filling clay clusters (probably derived from a mechanically deformed lithic grain) are relatively mobile and are prone to "brush-pile" within the intergranular pore throats, thus reducing the permeability.

CH2M Hill, Inc.; Laredo ASR; TW-2A; Proj. #118069; Core # C-2 - 292.5 ft.; Mineralogy, Inc. # 97-288-01



### Mineralogy Incorporated

3228 E. 15th Street Tulsa, Okla. 74104

## **Particle Size Analysis**

CH2M Hill, Inc.

Laredo ASR; TW-2A; Project No.: 118069 - Core C-2; 292.5 ft.

Mineralogy, Inc. Job # 97-288-01

Mesh	Phi	inches	Millimeter	Microns	inc.		Cum. %	Percent				
Count	Value				Percent	Larger Than	Smaller Than	Larger Than	Phi	microns	mm	inches
18	0	0.0394	1.0000	1000		0.00	100.00	5	2.16	223.7	0.2237	0.00881
20	0.25	0.0331	0.8410	841	0.00	0.00	100.00	10	2.38	192.3	0.1923	0.00757
25	0.50	0.0278	0.7070	707	0.00	0.00	100.00	16	2.56	169.4	0.1694	0.00667
30	0.75	0.0234	0.5950	595	0.00	0.00	100.00	25	2.77	146.5	0.1465	0.00577
35	1.00	0.0197	0.5000	500	0.00	0.00	100.00	50	3.22	107.3	0.1073	0.00422
40	1.25	0.0165	0.4200	420	0.00	0.00	100.00	75	3.71	76.5	0.0765	0.00301
45	1.50	0.0139	0.3540	354	0.10	0.10	99.90	84	3.97	63.7	0.0637	0.00251
50	1.75	0.0117	0.2970	297	0.60	0.70	99.30	90	4.28	51.5	0.0515	0.00203
60	2.00	0.0098	0.2500	250	1.80	2.50	97.50	95	5.67	19.7	0.0197	0.00078
70	2.25	0.0083	0.2100	210	3.90	6.40	93.60					
80	2.50	0.0070	0.1770	177	7.00	13.40	86.60		Phi	microns	mm	inches
100	2.75	0.0059	0.1490	149	10.50	23.90	76.10	Median				
120	3.00	0.0049	0.1250	125	13.30	37.20	62.80	Value	3.22	107.27	0.10727	0.00422
140	3.25	0.0041	0.1050	105	14.50	51.70	48.30	Primary	Peak Va	alue =	14.50	
170	3.50	0.0035	0.0880		13.90	65.60	34.40	Mode	3.13	114.63		0.00451
200	3.75	0.0029	0.0740		11.30	76.90		Secondary	Peak Va	alue =	0.00	
230	4.00	0.0025	0.0630		8.00	84.90		Mode	11.125	0.45	0.0004	0.00002
270	4.25	0.0021	0.0530	53	4.80	89.70	10.30					
325	4.50	0.0017	0.0440	44	2.50	92.20			Trask	Values	Folk	Values
400		0.0015	0.0370	37	1.20	93.40			Phi	mm	Phi	mm
450	5.00	0.0012	0.0310	31	0.70	94.00	5.90	Mean		0.107	3.251	0.11
500	5.25	0.0010		26	0.40	94.40	5.50	Sorting	<u> </u>	0.4027		0.5767
635	5.50	0.0009	0.0220			94.80	5.10	Skewness		0.5017		0.8
	5.75	0.0007	0.0190	19	0.30	95.10	4.80	Kurtosis		0.1828	1.533	0.3032
	6.00	0.0006	0.0160	16	0.30							
	6.25	0.0005									Values (r	
	6.50									First Mome		0.0914
	6.75								Std. De	v. (Second	Moment	0.627
	7.00											
	7.25											-
	7.50									and Conte		1
	7.75								% Coar		0.00	
	8.00								% Med		2.50	
	8.25								% Fine		34.70	
		0.0001							% Very		47.70	
	8.75								% Tota	I Sand	84.90	<u>J</u>
	9.00											-
	9.25									ilt Content		1
	9.50								% Coa		9.10	
	9.75								% Med		1.40	
	10.00								% Fine		1.00	
	10.25								% Very		1.00	
	10.50								% Tota	I Silt	12.50	Ц
	10.75											
	11.00									lay Conte		1
	11.25								% Clay	'	2.60	<u>u</u>
	14.9	0.0000	0.0000	0.01	0.00	100.00	0.20	)				



### CH2M HILL, INC. LAREDO ASR; WELL TW-2A PROJECT # 118069

CORE NO. C-3; 330.0 - 330.95 ft.

MACROSCOPIC CORE DESCRIPTION, THIN SECTION PETROGRAPHY, SCANNING ELECTRON MICROSCOPY and LASER PARTICLE SIZE ANALYSIS RESULTS



#### MACROSCOPIC CORE DESCRIPTION

CH2M Hill, Inc. Laredo ASR; TW-2A; Project No.: 118069

Core No.: C-3; 330.0 - 330.95 ft.

Mineralogy, Inc. Job No.: 97-288-02

A light gray, very fine-grained, very well sorted, weakly consolidated, friable, ripple-bedded to low angle cross-bedded, silty, porous and permeable sublitharenitic sandstone. The interval between 330.0 - 330.45 ft. is characterized by a predominance ripple-bedded lamina alternating with low angle cross bed sets (5-10 degrees). The ripple troughs are locally highlighted by very thin, flaser-like lenses of detrital clay matrix. This sub-interval is underlain (330.45 - 330.95 ft.) by subtly higher energy, low angle cross bedded sandstone (5 - 10 degrees), which is characterized by a lower density of detrital matrix lenses capping the individual cross bed sets. As within core C-2, this interval is glauconitic and slightly calcareous to dolomitic. The common presence of the interbedded clay matrix lenses (especially within the uppermost one-third of this core, will reduce the vertical permeability of this sandstone interval. The principal stabilizing force within this weakly consolidated and friable sandstone appears to be pseudomatrix derived from mechanically deformed glauconite pellets coupled with minor quartz overgrowth cement. Intergranular porosity appears to be slightly more abundant within the lower, cross-bedded sandstone (330.45 - 330.95 ft.), with voids well interconnected.

#### PETROGRAPHIC ANALYSIS

CLIENT: CH2M Hill, Inc.

PROJECT IDENTIFICATION / WELL: Laredo ASR - TW-2A: #118069

CORE NO. / DEPTH (ft.):

#C-3 / 330.65 ft.

MINERALOGY, INC. JOB NO:

97-288-02

LITHOLOGY:

Porous, Glauconitic, Sublitharenitic Sandstone

CLASTIC TEXTURE (mm):

Mean = 0.09

Max = 0.34

PORE DIAMETER (mm):

Mean = 0.025

**HELIUM POROSITY:** 

32.1%

AIR PERMEABILITY (Horiz): 631 md.

FABRIC / TEXTURE: This core sample is comprised of very fine-grained, very well sorted, slightly calcareous and glauconite-rich, sublitharenitic sandstone. The fabric contains a few lenses and lamina of detrital-clay-rich sand, oriented parallel to the bedding plane of the sandstone. The lamina lack continuity across the thin section, and reflect episodes of depositional quiescence which were characterized by the patchy accumulation/infiltration of suspended sediment within the sandstone fabric. The detrital clay-rich lenses have contributed to a sharp drop in the vertical permeability (207 md.), relative to the horizontal permeability (631 md.) for this interval. The depositional fabric is mildly compacted and displays common point-to-point and elongated intergranular contacts, with lenses of detrital clay and ductile grains locally deformed due to mechanical compaction. Pseudomatrix is locally present due to the compression and injection of clay derived from glauconite pellets and matrix-rich SRF's into the adjoining pore spaces. The sandstone fabric is porous (32.1%) and displays a well interconnected intergranular pore network. The sandstone is best described as very weakly consolidated and friable.

FRAMEWORK COMPONENTS: Detrital grain types included within this core sample are listed below, in order of decreasing relative abundance:

Ouartz: Monocrystalline quartz and minor polycrystalline quartz varieties.

Glauconite: Locally deformed due to compaction - comprised of light to dark greencolored. microcrystalline clay matrix minerals (chiefly mixed-laver illite/smectite, illite and chlorite).

Sedimentary Rock Fragments (SRF's); Shale and mudstone clasts - typically laminated and locally silty

Feldspar; Plagioclase + k-feldspar locally leached and replaced with clay matrix with common intragranular dissolution porosity.

Volcanic Rock Fragments (VRF's); Extensively matrix-replaced

Chert

Muscovite and biotite mica, amphibole (basaltic hornblende), metamorphic RF's, magnetite, ilmenite/leucoxene and epidote are present as accessory constituents.

MATRIX / CEMENTS: Traces of carbonate cement are locally scattered within the pore network as patches of finely crystalline dolomite, siderite and ferroan dolomite. Traces of quartz overgrowth cement are present on scattered quartz grains as weakly developed syntaxial rims and nodules. Iron oxide cement and pyrite are present as accessory cement varieties which are locally concentrated within the matrix-rich lamina of the sandstone. Clay is present throughout the framework as a primary constituent within the glauconite pellets and SRF's, as scattered patches of microporous pore-filling matrix (mostly pseudomatrix derived from squashed glauconite) and as grain-coating matrix which is locally concentrated within the intergranular pore throats. Lenticular concentrations of detrital clay are concentrated along discontinuous, bedding plane lamina. The clay mineralogy is dominated by mixedlayer illite/smectite and chlorite, together with minor amounts of illite and kaolinite.

PORE SYSTEM: The intergranular pore network is very well preserved and interconnected, given the paucity of intergranular cements and pore-filling clays. Vertical permeability is somewhat compromised due to the detrital clay lenses. Secondary voids are present owing to the partial to complete dissolution of feldspar grains and metastable RF's. Microporosity is present in association with the matrix-rich glauconite pellets and the scattered patches of pore-filling pseudomatrix.



Figure A. A low magnification view of this very fine-grained, porous and glauconitic sublitharenitic sandstone. Note the discontinuous laminae of matrix-rich sand along the upper margin of this photomicrograph. The matrix contained in this laminae is a combination of infiltrated detrital clay, pelletal grains and matrix-rich SRF's and pseudomatrix. 16X uncrossed nicols 1.25"=2.0mm

CH2M Hill, Inc.; Laredo ASR; TW-2A; Project # 118069; Core C-3; 330.65 ft.

Mineralogy, Inc. Job # 97-288-02

Figure B. A detailed view of a rather typical, wispy lens of matrix-rich sand, in which the clay has effectively obstructed fluid communication. Note the deformed glauconite pellets (right-center). Much of the clay present within this lens is interpreted as pseudomatrix derived from squashed glauconite pellets and mudstone SRF's. 100X uncrossed nicols 1"=0.25mm



#### SCANNING ELECTRON MICROSCOPY

CH2M Hill, Inc. Laredo ASR; TW-2A; Project No.: 118069

Core No.: C-3; 330.65 ft.

Mineralogy, Inc. Job No.: 97-288-02

#### A & B

This sample is comprised of porous and permeable, very fine-grained, very well sorted, sublitharenitic sandstone. Note the well interconnected voids distributed throughout Figure A, and the localized presence of pore-filling clay matrix (e.g., center), and weakly developed quartz overgrowths (e.g., extreme lower-left). Note the large irregular-shaped grain near the center of Figure A - representing a matrix-rich lithic fragment (possibly multiple glauconite pellets and/or mudstone clasts). Figure B provides a detailed view of the matrix concentrated in the pore throat present on the lower margin of this grain cluster. The matrix is comprised of mixed-layer illite/smectite together with traces of vermicular (authigenic) kaolinite (top-center, Figure B).

#### C&D

The cluster of pore-filling matrix at the center of Figure C represents pseudomatrix derived from a quashed glauconite pellet. Note the laminated, clay-rich lithic fragment (shale) in the upper-right quadrant of Figure C and the aggressively leached feldspar (?) grain in the lower-right corner of this photomicrograph. Figure D provides a detailed view of the microcrystalline clay within the glauconitic pseudomatrix visible at the center of Figure C. The clay is comprised of mixed-layer illite/smectite and chlorite. Note the abundance of intercrystalline microporosity associated with this cluster of matrix material.

CH2M Hill, Inc.; Laredo ASR; TW-2A; Proj. #118069; Core # C-3 - 330.65 ft.; Mineralogy, Inc. # 97-288-02



## Mineralogy Incorporated

3228 E. 15th Street Tulsa, Okia. 74104

## Particle Size Analysis

CH2M Hill, Inc.

Laredo ASR; TW-2A; Project No.: 118069 - Core C-3; 330.65 ft.

Mineralogy, Inc. Job # 97-288-02

Mesh	Phi	Inches	Millimeter	Microns	inc.	Cum. %	Cum. %	Percent				
	Value				Percent	Larger	Smaller	Larger	Phi	microns	mm	inches
						Than	Than	Than				
18	0	0.0394		1000	0.00	0.00	100.00	5	2.48	178.6	0.1786	0.00703
20	0.25	0.0331	0.8410	841	0.00	0.00	100.00	10	2.69	154.6	0.1546	0.00609
25	0.50	0.0278		707	0.00	0.00	100.00	16	2.87	136.7		0.00538
30	0.75	0.0234		595	0.00	0.00	100.00	25	3.08	118.0	0.1180	0.00465
35	1.00	0.0197		500	0.00	0.00	100.00	50 75	3.55	85.2		0.00336
40 45	1.25	0.0165		420 354	0.00 0	0.00 0.00	100.00 100.00	75 84	4.10 4.44	58.5 46.2	0.0585	0.00230
50	1.50 1.75	0.0139 0.0117			0.10	0.00	99.90	90	5.06	30.1	0.0301	0.001 <b>82</b> 0.00118
60	2.00	0.0098			0.10	0.10	99.50	95	7.30	6.3	0.0063	0.00025
70	2.25	0.0030			1.40	1.90		50	7.50	0.5	0.0003	0.00023
· 80	2.50	0.0003			3.30	5.20			Phi	microns	mm	inches
100	2.75	0.0059			6.20	11.40		Median	F 111	IIIGIONS	111111	inchies
120	3.00	0.0049			9.50	20.90		Value	3.55	85 22	0.08522	0.00336
140	3.25	0.0041			12.40	33.30		Primary	0.00	00.22	U.UUUZE	0.00000
170	3.50	0.0035			13.90	47.20		Mode				1
200	3.75	0.0029			13.30	60.50		Secondary		<del></del>		
230	4.00	0.0025			11.30	71.80		Mode	İ			l
270		0.0021			8.30	80.10			<u> </u>	<del></del>		
325	4.50	0.0017			5.20	85.30			Trask	Values	Folk	Values
400	4.75	0.0015			2.90	88.20			Phi	mm	Phi	mm
450	5.00	0.0012			1.60	89.80		Mean		0.0848	3.620	0.08
500	5.25	0.0010	0.0260	26	0.90	90.70	9.30	Sorting	ļ	0.396		0.4928
635	5.50	0.0009	0.0220	22	0.60	91.30	8.70	Skewness	l	0.4999	0.343	0.8
	5.75	0.0007	0.0190	19	0.60	91.90	8.10	Kurtosis		0.1327	1.947	0.2092
	6.00	0.0006	0.0160		0.50	92.40						
	6.25	0.0005			0.50	92.90					Values (n	
	6.50	0.0004			0.50	93.40				irst Mome	•	0.0684
	6.75	0.0004			0.50				Std. De	v. (Second	Moment	0.6113
	7.00	0.0003			0.50							
	7.25	0.0003			0.50						<del> </del>	,
	7.50	0.0002	•							and Conte		
	7.75	0.0002							% Coan		0.00	
	8.00	0.0002							% Medi	um	0.50	
	8.25								% Fine	Fine	20.40	
		0.0001							% Very		50.90	
		0.0001							% Total	Sand	71.80	ì
		0.0001								ilt Content	<u> </u>	1
	9.25 9.50								% Coar		18.00	
	9.75								% Medi		2.60	
	10.00								% Fine	uili	2.00	
	10.25								% Very	Fine	1.80	1
	10.50								% Tota		24.40	
	10.75											<b></b>
	11.00								С	lay Conte	nt	7
	11.25								% Clay		3.80	1
		0.000								•		-



### CH2M HILL, INC. LAREDO ASR; WELL TW-2A PROJECT # 118069

CORE NO. C-7; 400.65 - 401.9 ft.

MACROSCOPIC CORE DESCRIPTION,
THIN SECTION PETROGRAPHY,
SCANNING ELECTRON MICROSCOPY
and
LASER PARTICLE SIZE ANALYSIS RESULTS



#### MACROSCOPIC CORE DESCRIPTION

CH2M Hill, Inc. Laredo ASR; TW-2A; Project No.: 118069

Core No.: C-7; 400.65 - 401.9 ft.

Mineralogy, Inc. Job No.: 97-288-03

A light gray, very fine-grained, very well sorted, weakly consolidated, friable, low angle cross-bedded to massive, porous and permeable sublitharenitic sandstone. The interval between 400.9 - 401.25 ft. is massively bedded and contains localized lobes of detrital matrix which appear to represent in-filled burrow molds. The balance of the core interval is characterized by low angle cross bed sets (5-10 degrees) with subtle traces of infiltrated detrital matrix situated near the tops of the cross bed sets. The sandstone framework is quartz-rich and contains scattered glauconite pellets and woody plant fragments which have been locally replaced with pyrite. Traces of dolomite cement are present as an intergranular pore-filling component. The sandstone is porous and permeable as evidenced by the rapid absorption of water on the core surface.

#### PETROGRAPHIC ANALYSIS

CLIENT / PROJECT IDENTIFICATION: CH2M Hill, Inc. / Laredo ASR - TW-2A; #118069

CORE NO. / DEPTH (ft.):

#C-7 / 401.3 ft.

MINERALOGY, INC. JOB NO:

97-288-03

LITHOLOGY:

Porous, Glauconitic, Sublitharenitic Sandstone

CLASTIC TEXTURE (mm):

Mean = 0.105

Max = 0.47

PORE DIAMETER (mm):

Mean = 0.030

**HELIUM POROSITY:** 

30.4%

AIR PERMEABILITY (Horiz):

809 md.

FABRIC / TEXTURE: This core sample is comprised of very fine-grained, very well sorted, slightly dolomitic and glauconite-rich, sublitharenitic sandstone. The fabric contains a few scattered lobes and lenses of organic-matter and detrital clay-rich sand, suggestive of biomrbation. The surrounding sandstone framework is mildly compacted and contains a predominance of point-to-point and elongated intergranular contacts, with lenses of detrital clay and ductile grains locally deformed due to mechanical compaction. as within the previously described sandstones from this aquifer, scattered patches of pseudomatrix are locally present owing to the compaction and subsequent injection of clay (derived from glauconite pellets and matrix-rich SRF's) into the adjoining pore spaces. The sandstone fabric is weakly consolidated, friable, porous (30.4%) and permeable (Kh=809md.) and displays a well interconnected intergranular pore network.

FRAMEWORK COMPONENTS: Detrital grain types included within this core sample are listed below, in order of decreasing relative abundance:

Ouartz, Monocrystalline quartz and minor polycrystalline quartz varieties.

Glauconite; Locally deformed due to compaction - comprised of light to dark green-colored, microcrystalline clay matrix minerals (chiefly mixed-layer illite/smectite, illite and chlorite).

Sedimentary Rock Fragments (SRF's); Shale and mudstone clasts - typically laminated and locally silty

Feldspar; Plagioclase + k-feldspar locally leached and replaced with clay matrix with common intragranular dissolution porosity.

Volcanic Rock Fragments (VRF's); Extensively matrix-replaced, feldspar-rich grains

Woody Plant Fragments; Extensively replaced with pyrite and preferentially associated with the lobes of matrix-rich sand.

Chert

Muscovite and biotite mica, amphibole (basaltic hornblende), metamorphic RF's, magnetite and epidote are present as accessory constituents.

MATRIX / CEMENTS: Traces of carbonate cement are locally scattered within the pore network as patches of finely crystalline dolomite and ferroan dolomite. The dolomite displays very faint traces of alizarin-red stain, confirming the origin of the dolomite as a replacement for precursor calcite. Pyrite is a minor replacement variety associated with the woody plant debris. Traces of quartz overgrowth cement are present on scattered quartz grains as weakly developed syntaxial rims and nodules. Clay is present throughout the framework as a primary constituent within the glauconite pellets and SRF's, as scattered patches of microporous pore-filling matrix (mostly pseudomatrix derived from squashed glauconite) and as irregularly distributed grain-coating matrix which is locally concentrated within the intergranular pore throats. Lenticular and lobe-shaped concentrations of detrital clay are irregularly distributed as a pore-filling constituent - probably derived as infiltrated clay associated with bioturbation. The clay mineralogy is dominated by mixed-layer illite/smectite and chlorite, with minor illite and kaolinite.

PORE SYSTEM: The intergranular pore network is very well preserved and interconnected, with macropore types including intergranular (primary) and secondary (intragranular & grain-moldic) voids. Secondary voids are present owing to the partial to complete dissolution of feldspar grains and metastable RF's. Microporosity is present in association with the matrix-rich glauconite pellets and the scattered patches of pore-filling pseudomatrix.

#### SCANNING ELECTRON MICROSCOPY

CH2M Hill, Inc. Laredo ASR; TW-2A; Project No.: 118069

Core No.: C-7; 401.3 ft.

Mineralogy, Inc. Job No.: 97-288-03

#### A & B

This sample is comprised of porous and permeable, very fine-grained, very well sorted, glauconitic, sublitharenitic sandstone. Figure A provides a typical, low magnification view of the sandstone framework, illustrating the well interconnected character of the pore network within this core interval. Figure B provides a detailed view of the leached detrital grain visible at the center of Figure A. This grain is tentatively identified as a leached volcanic RF which is marginally encrusted with a lacy network of microcrystalline iron oxide cement. The interior of this grain appears to be replaced with chlorite-rich matrix material.

#### C & D

Figure C provides a general view of this sandstone illustrating a leached rock fragment with intragranular dissolution porosity (top-center), a pore-filling concentration of dolomite cement (upper-left) and weakly developed rims of quartz overgrowth cement (e.g., lower-right and right-center). Figure D provides a close-up image of the pore throat situated to the lower-left of the leached grain noted in Figure C. The matrix cluster occupying this pore throat (top-center, Figure D) is comprised of a combination of mixed-layer illite/smectite and chlorite. Note the grain-coating chlorite matrix visible on the grain surface adjoining this pore (e.g., left-center).



Figure A. This sandstone is described as a glauconitic, porous, sublitharenitic sandstone which displays lobe-shaped concentrations of infiltrated detrital clay (e.g., center). The black colored particles and mechanically deformed lenses are interpreted as organic matter which has been partially replaced with pyrite cement. The shape of the matrix-rich sandstone lobes is suggestive of in-filled burrow molds. 16X uncrossed nicols 1.25"=2.0mm

CH2M Hill, Inc.; Laredo ASR; TW-2A; Project # 118069; Core C-7; 401.3 ft.

Mineralogy, Inc. Job # 97-288-03

Figure B. As within the previously described sandstones from this aquifer, much of the clay matrix present in this core sample occurs as intragranular matrix within glauconite pellets (e.g., green; lower-right and top-center) and matrix-rich SRF's. Note the microporous authigenic clay encrusting the leached feldspar grain and choking the pore throat in the center of this photomicrograph. 100X uncrossed nicols 1"=0.25mm





## Mineralogy Incorporated

3228 E. 15th Street Tulsa, Okla. 74104

## Particle Size Analysis

CH2M Hill, Inc.

Laredo ASR; TW-2A; Project No.: 118069 - Core C-7; 401.3 ft.

Mineralogy, Inc. Job # 97-288-03

Mesh	Phi	inches	Millimeter	Microns	Inc.	Cum. %	Cum. %	Percent				
Count	Value				Percent	Larger	Smaller	Larger	Phi	microns	mm	inches
						Than	Than	Than				
18	0	0.0394	1.0000	1000	0.00	0.00	100.00	5	2.24	212.4	0.2124	0.00836
20	0.25	0.0331	0.8410		0.00	0.00	100.00	10	2.43	185.0		0.00728
25	0.50	0.0278	0.7070		0.00	0.00	100.00	16	2.61	164.0	0.1640	0.00646
30	0.75	0.0234	0.5950		0.00	0.00	100.00	25	2.82	142.0	0.1420	0.00559
35	1.00	0.0197	0.5000		0.00	0.00	100.00	50	3.27	103.4	0.1034	0.00407
40	1.25	0.0165	0.4200		0.00	0:00	100.00	75	3.79	72.1	0.0721	0.00284
45	1.50	0.0139	0.3540	354	0	0.00	100.00	84	4.12	57.6	0.0576	0.00227
50	1.75	0.0117	0.2970	297	0.40	0.40	99.60	90	4.62	40.5	0.0405	0.00160
60	2.00	0.0098	0.2500		1.40	1.80	98.20	95	6.94	8.2	0.0082	0.00032
70	2.25	0.0083	0.2100		3.40	5.20	94.80					
80	2.50	0.0070	0.1770		6.50	11.70	88.30		Phi	microns	mm	inches
100	2.75	0.0059	0.1490		9.90	21.60		Median				
120	3.00	0.0049	0.1250		12.90	34.50		Value	3.27	103.40	0.1034	0.00407
140	3.25	0.0041	0.1050		14.20	48.70		Primary				
170	3.50	0.0035	0.0880		13.70	62.40	37.60					
200	3.75	0.0029	0.0740		11.20	73.60		Secondary				
230	4.00	0.0025	0.0630		8.10	81.70		Mode				
270	4.25	0.0021	0.0530		4.90	86.60	13.40					
325	4.50	0.0017	0.0440		2.70	89.30	10.70		Trask	Values	Folk	Values
400	4.75	0.0015	0.0370		1.40	90.70	9.30		Phi	mm	Phi	mm
450	5.00	0.0012	0.0310		0.90	91.60		Mean		0.1031	3.333	0.10
500	5.25	0.0010	0.0260		0.60	92.20		Sorting		0.3992		0.4972
635	5.50	0.0009	0.0220		0.50	92.70		Skewness		0.5001	0.338	0.8
	5.75	0.0007	0.0190		0.40	93.10		Kurtosis		0.1494	1.972	0.199
	6.00	0.0006	0.0160		0.40	93.50	6.50					
	6.25	0.0005	0.0130		0.40	93.90	6.10			Moment		
	6.50	0.0004			0.40	94.30	5.70			irst Mome		0.0832
	6.75	0.0004			0.40	94.70	5.30		Std. De	v. (Second	Moment	0.6119
	7.00	0.0003			0.40	95.10						
	7.25	0.0003			0.40	95.50						•
	7.50	0.0002			0.40	95.90				and Conte		
	7.75	0.0002			0.40	96.30			% Coan		0.00	
	8.00	0.0002			0.30				% Medi	um	1.80	L
		0.0001	0.0033		0.30				% Fine		32.70	
		0.0001			0.30				% Very		47.20	
		0.0001			0.30				% Total	Sand	81.70	]
		0.0001										•
		0.0001								It Content		1
		0.0001							% Coar		9.90	
	9.75								% Medi	um	1.90	
		0.0000							% Fine	_	1.60	
		0.0000							% Very		1.50	
	10.50								% Total	Silt	14.90	1
	10.75										-	_
	11.00									lay Conter		1
	11.25								% Clay		3.40	Ц .
	14.9	0.0000	0.0000	0.01	0.00	100.20	-0.20	)				



TOTAL SUSPENDED SOLIDS AND MODIFIED FOULING INDEX SPREADSHEET

**LAREDO ASR** 

(DS) FILTER END WT:

0.0778

7/11/97

(US) FILTER END WT:

0.0845

**DEL MAR SITE** 

TEST 1

TEMPERATURE:

37 C

FILTERS # 59 (DS) AND #64 (US), STARTING WT 0.0831

Notes:no tears in filters

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	44	44	30	11	0.5	88
1000	88	44	30	11	1	88
1500	135	47	30	11	1.5	90
2000	184	49	30	11	2	92
2500	235	51	30	11	2.5	94
3000	286	51	30	10	3	95
3500	340	54	30	10	3.5	97
4000	398	58	30	10	4	100
4500	460	62	30	10	4.5	102
5000	523	63	30	10	5	105
5500	600	77	30	9	5.5	109
6000	675	75	30	9	6	113
6500	763	88	30	9	6.5	117
7000	854	179	30	8	7	122
7500	950	96	30	8	7.5	127
8000	1070	120	30	7	8	134
8500	1190	120	30	7	8.5	140
9000	1317	127	30	· 7	9	146

MFI=	3.35
TSS Correction	0.741
Temp Correction	1.43
actual MFI =	3.55

TSS calculation assumptions:

Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 0.74 mg/L





LAREDO ASR

7/11/97

FILTER START WT:

0.0827

**DEL MAR SITE** 

FILTER END WT:

0.0846

TEST 1

FILTER # 51, WT 0.0827

TEMPERATURE:

37 C

Notes: Filter torn near end of test

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	30	30		17	0.5	
1000	61	31	30	16	1	61
1500	92	31	30	16	1.5	61
2000	125	33		16	2	63
2500	160	35		16	2.5	64
3000	195	35		15	3	65
3500	232	37		15	3.5	66
4000	272	40		15	4	68
4500	313	41	30	14	4.5	70
5000	357	44	30	14	5	71
5500	403	46		14	5.5	73
6000	455	52	30	13	6	76
6500	510	55	30	13	6.5	78
7000	572	62	30	12	7	82
7500	641	69	30	12	7.5	85
8000	719	78	30	11	8	90
8500	804	85	30	11	8.5	95
9000	899	95	30	10	9	100
9500	988	89	30	10	9.5	104
10000	1076	88	30	9	10	108
10500	1166	90	30	9	10.5	111
11000	1258	92	30	9	11	114
11500	1352	94	30	9	11.5	118
12000	1446	94	30	8	12	121
MFI=	2.7					
Temp Correction						
actual MFI =	3.86					

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter.

Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS =

0.6 mg/L





LAREDO ASR

7/11/97

FILTER START WT:

0.083

**DEL MAR SITE** 

FILTER END WT:

0.0849

TEST 2

FILTER # 52, WT 0.0830

TEMPERATURE:

37 C

Notes:

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	28	28	30	18		56
1000	59	31	30	17	1	59
1500	94	35	30	16	· 1.5	63
2000	128	34	30	16	2	64
2500	164	36	30	15	2.5	66
3000	201	37	30	15	3	67
3500	241	40	30	15	3.5	69
4000	282	41	30	14	4	71
4500	326	44	30	14	4.5	72
5000	373	47	30	13	5	75
5500	426	53	30	13	5.5	77
6000	485	59	30	12	6	81
6500	548	63	30	12	6.5	84
7000	620	72	30	11	7	89
7500	704	84	30	11	7.5	94
8000	794	90	30	.10	8	99
8500	892	98	30	10	8.5	105
9000	1001	109	30	9	9	111
9500	1123	122	30	8	9.5	118
10000	1252	129	30	8	10	125

MFI≖ 2.92 **Temp Correction** 1.43 actual MFI = 4.18

TSS calculation assumptions:

Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 0.72 mg/L





LAREDO ASR

7/11/97

FILTER START WT:

0.0831

**DEL MAR SITE** 

FILTER END WT:

0.0848

TEST 3

FILTER # 54, WT 0.0831

TEMPERATURE:

37 C

Notes: filter broken at end of test

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	28	28	30	18	0.5	56
1000	58	30	30	17	1	58
1500	89	31	30	17	1.5	59
2000	119	30	30	17	2	60
2500	153	34	30	· 16	2.5	61
3000	187	34	30	16	3	62
3500	225	38	30	16	3.5	64
4000	262	37	30	15	4	66
4500	300	38	30	15	4.5	67
5000	340	40	30	15	5	68
5500	382	42	30	14	5.5	69
6000	425	43	30	14	6	71
7000	477	52	30	15	7	68
7500	527	50	30	14	7.5	70
8000	584	57	30	14	8	73
8500	644	60	30	13	8.5	76
9000	710	66	30	13	9	79
9500	782	72	30	12	9.5	82
10500	866	84	30	12	10.5	82
11000	918	52	30	12	11	83

MFI= Not Calculated Temp Correctio 1.43 actual MFI =

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 0.7 mg/L



TOTAL SUSPENDED SOLIDS AND MODIFIED FOULING INDEX SPREADSHEET

LAREDO ASR

(DS) FILTER END WT:

0.0815

7/11/97

(US) FILTER END WT:

0.0827

**EAST CORRIDOR SITE** 

TEST 1

**TEMPERATURE:** 

----

32 C

FILTERS # 29(ds) AND #33 (us), STARTING WT: 0.0812

Notes: Both filters torn at end of test

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	<b>ELAPSED TIME</b>	INTERVAL	PRESSURE	RATE ·	VOLUME	VOLUME
VOULME (ml)	(sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	40	40	30	13	0.5	80
1000	82	42	30	12	1	82
1500	124	42	30	12	1.5	83
2000	167	43	30	12	2	84
2500	213	46	30	12	2.5	85
3000	259	46	30	12	3	86
3500	309	50	30	11	3.5	. 88
4000	362	53	30	11	4	91
4500	420	58	30	11	4.5	93
5000	485	65	30	10	5	97
5500	544	59	30	10	5.5	99
MFI=	1.5					
TSS Correction	0.741					
Temp Correction						

TSS calculation assumptions:

actual MFI =

Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter.

Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

1.42

TSS = 1.42 mg/L





LAREDO ASR

7/11/97 **EAST CORRIDOR SITE**  FILTER START WT: FILTER END WT:

0.0771

TEST 1

FILTER # 45, WT 0.0771

0.0783

TEMPERATURE:

32 C

١	lotes:	Filter	tom	during	tes

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	30	30	30	17	0.5	60
1000	63	33	30	16	1	63
1500	96	33	30	16	1.5	64
2000	131	35	30	15	2	66
2500	169	38	30	15	2.5	68
3000	209	40	30	14	3	70
3500	251	42	30	14	3.5	72
4000	296	45	- 30	14	4	74
4500	346	50	30	13	4.5	77
5000	396	50	30	13	5	79
5500	433	37	30	13	5.5	79
6000	470	37	30	13	6	78
7000	545	75	30	13	7	78
7500	582	37	30	13	7.5	78
8000	620	38	30	13	8	78

MFI= 2.5 **Temp Correction** 1.28 actual MFI = 3.2

TSS calculation assumptions:

Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS =

1.3 mg/L





TIME/TOTAL

MODIFIED FOULING INDEX SPREADSHEET

LAREDO ASR

7/11/97 EAST CORRIDOR SITE FILTER START WT: FILTER END WT: 0.0815 0.0829

TEST 2

FILTER # 44, WT 0.0815

TEMPERATURE:

32 C

TOTAL

FLOW

Notes: Filter torn during test after 6000 ml

				LOW	IOIAL	THAT
CUMULATIVE	ELAPSED TIME	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	(sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	34	34	30	15	• 0.5	68
1000	65	31	30	15	1	65
1500	104	39	30	14	1.5	69
2000	137	33	30	15	2	69
2500	176	39	30	14	2.5	70
3000	226	50	30	13	3	75
3500	256	30	30	14	3.5	73
4000	298	42	30	13	4	75
4500	342	44	30	13	4.5	76
5000	392	50	30	13	5	78
5500	447	55	30	12	5.5	81
6000	509	62	30	12	6	85
6500	568	59	30	11	6.5	87

MFI=

Not Calculated

Temp Correction

1.28

actual MFI =

TSS calculation assumptions:

Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS =

1.12 mg/L



44

LAREDO ASR

7/11/97

FILTER START WT: FILTER END WT: 0.0773 0.0780

EAST CORRIDOR SITE TEST 3

FILTER # 42, WT 0.0773

TEMPERATURE:

32 C

Notes: Filter torn during whole test

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	32	32	30	16	0.5	64
1000	63	31	30	16	1	63
1500	96	33	30	16	1.5	64
2000	131	35	30	15	2	66
2500	168	37	30	15	2.5	67
3000	202	34	30	15	3	67
3500	234	32	30	15	3.5	67
4000	266	32	30	15	4	67
4500	299	33	30	15	4.5	66
5000	331	32	30	15	5	66
5500	365	34	30	15	5.5	66
6000	408	43	30	15	6	68
6500	431	23	30	15	6.5	66

MFI=

Not Calculated

**Temp Correction** 

1.28

actual MFI =

TSS calculation assumptions:

Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS =

0.92 mg/L



LAREDO ASR

7/11/97 EAST CORRIDOR SITE FILTER START WT:

FILTER END WT:

0.0771 0.0784

TEST 4

FILTER # 38, WT 0.0771

TEMPERATURE:

32 C

Notes: Filter torn towards end of test

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL.	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	29	29	30	17	0.5	58
1000	60	31	30	17	1	60
1500	91	31	30	16	1.5	61
2000	124	33	30	16	2	62
2500	159	35	30	16	2.5	64
3000	196	37	30	15	3	65
3500	235	39	30	15	3.5	67
4000	277	42	30	14	4	69
4500	324	47	30	14	4.5	72
5000	378	54	30	13	5	76
5500	442	64	30	12	5.5	80
6000	488	46	30	12	6	81
6500	531	43	30	12	6.5	82

MFI= 2 Temp Correctior 1.28 actual MFI = 2.56

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g.

If downstream filter <u>gained</u> wt, then add that wt gain to the top filter.

Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 1.2 mg/L





LAREDO ASR

7/11/97

FILTER START WT: FILTER END WT:

0.0777

**NW STORAGE TANK** 

TEST 1 FILTER # 30, WT 0.0777

TEMPERATURE:

0.0809

30 C

Notes: Filter torn near end of test

				FLOW		TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	TOTAL	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	VOLUME (L)	(sec/L)
500	32	32	41	16	0.5	64
1000	67	35	41	15	1	67
1500	101	34	41	15	1.5	67
2000	138	37	41	14	2	69
2500	176	38	41	14	2.5	70
3000	216	40	41	14	3	72
3500	258	42	41	14	3.5	74
4000	302	44	41	13	4	76
4500	347	45	41	13	4.5	77
5000	395	48	41	13	5	79
5500	446	51	41	12	5.5	81
6000	501	55	41	12	6	84
6500	560	59	41	12	6.5	86
7000	626	66	41	11	7	89
7500	699	73	41	11	7.5	93
8000	782	83	41	10	8	98
8500	830	48	41	10	8.5	98
9000	881	51	41	10	9	98

MFI=

Not Calculated

**Temp Correction** actual MFI =

1.25

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g.

If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS =

0.94 mg/L



LAREDO ASR

7/11/97 NW STORAGE TANK FILTER START WT: FILTER END WT:

0.0816 0.0845

TEST 2

FILTER # 36, WT 0.0816

TEMPERATURE:

30 C

Notes: Filter torn near end of test

CUMULATIVE VOULME (ml)		INTERVAL (sec)	PRESSURE (psi)	FLOW RATE (ml/sec)	TOTAL VOLUME (L)	TIME/TOTAL VOLUME (sec/L)
500	34	34	41	15	0.5	68
1000	71	37	41	14	1	71
1500	109	38	41	14	1.5	73
2000	149	40	41	13	2	75
2500	190	41	41	13	2.5	76
3000	232	42	41	13	3	. 77
3500	277	45	41	13	3.5	79
4000	324	47	41	12	4	81
4500	372	. 48	41	12	4.5	83
5000	423	51	41	12	5	85
5500	476	53	41	12	5.5	87
6000	536	60	41	11	6	89
6500	600	64	41	11	6.5	92
7000	675	75	41	10	7	96
7500	756	81	41	10	7.5	101
8000	850	94	41	9	8	106

MFI= 3.1
Temp Correctio 1.25
actual MFI = 3.88

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g.

If downstream filter <u>gained</u> wt, then add that wt gain to the top filter.

Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 1.03 mg/L





LAREDO ASR

7/11/97 NW STORAGE TANK FILTER START WT: FILTER END WT:

0.0773 0.0801

TEST 3

FILTER # 27, WT 0.0773

TEMPERATURE:

30 C

Notes: Filter torn near end of test

				FLOW	TOTAL.	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	31	31	41	16	0.5	62
1000	66	35	41	15	1	66
1500	102	36	41	15	1.5	68
2000	137	35	41	15	2	69
2500	173	36	41	14	2.5	69
3000	213	40	41	14	3	71
3500	253	40	41	14	3.5	72
4000	295	42	41	14	4	74
4500	337	42	41	13	4.5	75
5000	384	47	41	13	5	77
5500	431	47	41	13	5.5	78
6000	485	54	41	12	6	81
6500	543	58	41	12	6.5	84
7000	609	66	41	11	7	87
7500	664	55	41	11	7.5	89
8000	724	60	41	11	8	91

MFI= 1.2 Temp Correctio 1.25 actual MFI = 1.50

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 1.01 mg/L





TOTAL SUSPENDED SOLIDS AND MODIFIED FOULING INDEX SPREADSHEET

LAREDO ASR 7/11/97

(DS) FILTER END WT: (US) FILTER END WT: 0.0777 0.0790

**NW STORAGE TANK** 

TEST 1

TEMPERATURE;

30 C

FILTER # 32 (US) AND 25 (DS), STARTING WT 0.0771;

Notes: Filter tom near end of test

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	43	43	41	12	0.5	86
1000	88	45	41	11	1	88
1500	135	47	41	11	1.5	90
2000	182	47	41	11	2	91
2500	232	50	41	11	2.5	93
3000	283	51	41	11	3	94
3500	337	54	41	10	3.5	96
4000	396	59	41	10	4	99
4500	464	68	41	10	4.5	103
5000	535	71	41	9	5	107
5500	613	78	41	. 9	5.5	111
6000	701	88	41	9	6	117
6500	800	99	41	8	6.5	123
7000	919	119	41	8	7	131
7500	1069	150	41	7	7.5	143



TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g.

If downstream filter gained wt, then add that wt gain to the top filter.

Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 1.04 mg/L





TOTAL SUSPENDED SOLIDS AND MODIFIED FOULING INDEX SPREADSHEET LAREDO ASR

7/11/97

FILTER #40 END WT: FILTER #43 END WT:

0.0777 0.0772

JEFFERSON WATER TREATMENT PLANT (JWTP) TSS TEST 1 FILTERS # 40 (ds) and 43 (us) STARTING WT 0.0772, ENDING WT:

**TEMPERATURE:** 

30 C

Notes: both filters torn around o-ring at 8000 ML

		•		FLOW	TOTAL	TIME/TOTAL
		INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	(sec)		(psi)	(ml/sec)	(L)	(sec/L)
500	42	42	30	12	0.5	84
1000	86	44	30	12	1	* 86
1500	133	47	30	11	1.5	89
2000	182	49	30	11	2	91
2500	235	53	30	11	2.5	94
3000	290	55	30	10	3	97
3500	351	61	30	10	3.5	100
4000	414	63	30	10	4	104
4500	483	69	30	9	4.5	107
5000	558	75	30	9	5	112
5500	640	82	30	9	5.5	116
6000	727	87	30	8	6	121
6500	831	104	30	8	6.5	128
7000	943	112	30	7	7	135
7500	1075	132	30	7	7.5	143
8000	1220	145	30	7	8	153
8500	1300	80	30	7	8.5	153
9000	1346	46	30	7	9	150

MFI≖ 5.12 TSS correction x 0.741 Temp Correction x 1.25 Actual MFI 4.7424

TSS calculation assumptions:

Based on Del Mar test, assume all downstream filters lost 0.0053g.

If downstream filter gained wt, then add that wt gain to the upstream filter ending wt

Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L.

TSS = 1.36 mg/L





LAREDO ASR

FILTER START WT:

FILTER END WT:

0.085 0.0853

JEFFERSON WATER TREATMENT PLANT (JWTP)

TEST 1

TEMPERATURE:

30 C

FILTER # 50, WT 0.0850

7/11/97

Notes: filter not properly seated in O-ring, flow bypassing filter at some point in time

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED		PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	INTERVAL	(psi)	(ml/sec)	(L)	(sec/L)
100	7.9	7.9	30	13	0.1	79
200	12	4.1	30	17	0.2	60
300	18.5	6.5	30	16	0.3	62
400	25.5	7	30	16	0.4	64
600	38.6	13.1	30	16	0.6	64
700	44.5	5.9	30	16	0.7	64
800	50.7	6.2	30	16	0.8	63
900	56	5.3	30	16	0.9	62
1000	62	6	30	16	1	62
1200	78	16	30	15	1.2	65
1400	90	12	30	16	1.4	64
1600	104	14	30	15	1.6	65
1800	117	13	30	15	1.8	65
2000	130	13	30	15	2	65
2200	145	15	30	15	2.2	66
2400	158	13	30	15	2.4	66
2600	173	15	30	15	2.6	67
2800	188	15	30	15	2.8	67
3000	202	14	30	15	3	67
3400	232	30	30	15	3.4	68
3600	245	13	30	15	3.6	68
3800	262	17	30	15	3.8	69
4000	277	15	30	14	4	69

MFI= Not Calculated **Temp Correction** actual MFI =

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS ≃ 1.4 mg/L



LAREDO ASR

FILTER START WT:

0.0848

7/11/97

FILTER END WT:

0.0861

JEFFERSON WATER TREATMENT PLANT (JWTP)

TEST 2

TEMPERATURE:

30 C

FILTER # 48, WT 0.0848

Notes: test completed with filter intact

				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
200	17	17	30	12	0.2	85
400	31	14	30	13	0.4	78
600	46	15	30	13	0.6	77
800	60	14	30	13	0.8	75
1000	76	16	30	13	1	76
1200	91	15	30	13	1.2	76
1400	105	14	30	13	1.4	75
1600	120	15	30	13	1.6	75
1800	136	16	30	13	1.8	76
2000	151	15	30	13	2	76
2200	168	17	30	13	2.2	76
2400	184	16	30	13	2.4	77
2600	200	16	30	13	2.6	77
2800	217	17	30	13	2.8	78
3000	233	16	30	13	3	78

MFI=

Not Calculated

**Temp Correction** actual MFI =

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 2.2 mg/L



LAREDO ASR FILTER START WT:

0.0772 7/11/97 FILTER END WT: 0.0787

JEFFERSON WATER TREATMENT PLANT (JWTP)

TEST 3 TEMPERATURE: 30 C

FILTER # 46, WT 0.0772

Notes:

1101001				FLOW	TOTAL	TIME/TOTAL
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)
500	31	31	30	16		•
1000	65	34		15	1	65
1500	102		30	15	1.5	
2000	137	35		15	2	69
3000	212	75	30	14	3	71
3500	251	39	30	14	3.5	72
4000	289	38	30	14	4	72
4500	329	40	30	14	4.5	73
5000	371	42	30	13	5	74
5500	412	41	30	13	5.5	75
6000	454	42	30	13	6	76
6500	496	42	30	13	6.5	76
7000	541	45	30	13	7	77
7500	587	46	30	13	7.5	78
8000	631	44	30	13	8	79
8500	679	48	30	13	8.5	80
9000	725	46	30	12	9	81
MFI=	1.57					
Temp Correction	1.25					
actual MFI =	1.96					

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter.

Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053))/vol (L) x 1000 mg/L

TSS = 0.76





LAREDO ASR FILTER START WT: 0.0891 FILTER END WT: 0.0909 7/11/97

JEFFERSON WATER TREATMENT PLANT (JWTP)

TEST 3

TEMPERATURE:

30 C

FILTER # 47, WT 0.0891

Notes: filter tore all the way around o-ring between 7000mland 7500ml

				FLOW	TOTAL	TIME/TOTAL	
CUMULATIVE	ELAPSED	INTERVAL	PRESSURE	RATE	VOLUME	VOLUME	
VOULME (ml)	TIME (sec)	(sec)	(psi)	(ml/sec)	(L)	(sec/L)	
500	37	37	30	14	0.5	7	74
1000	75	38	30	13	1	7	75
1500	115	40	30	13	1.5	7	77
2000	155	40	30	13	2	7	78
2500	199	44	30	13	2.5	8	30
3000	242	43	30	12	3	8	31
3500	290	48	30	12	3.5	8	33
4000	339	49	30	12	4	8	35
4500	393	54	30	11	4.5	8	37
5000	452	59	30	11	5	9	90
5500	515	63	30	11	5.5	9	94
6000	582	67	30	10	6	9	97
6500	656	. 74	30	10	6.5	10	01
7000	730	74	30	10	7	10	)4
7500	785	55	30	10	7.5	10	)5
8000	842	57	30	10	8	10	)5
MFi≖	2.82						
<b>Temp Correction</b>	1.25						
actual MFI =	3.525						

TSS calculation assumptions: Based on Del Mar test, assume all downstream filters lost 0.0053g. If downstream filter gained wt, then add that wt gain to the top filter. Calculate total volume only up to point where filter breaks (if applicable)

TSS = (ending wt - (starting wt - 0.0053)/vol (L) x 1000 mg/in mg/L

TSS =

1.01 mg/L



