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1.0.0  PROJECT OVERVIEW 

This project is a continuation of the Phase 1 effort (conducted in the previous biennium, fiscal 

years 2014-2015) that used the Texas Parks and Wildlife Department (TPWD) Coastal Fisheries 

monitoring data and a multivariate autoregressive (MAR) modeling framework to verify that the 

effects of freshwater inflows on blue crab (Callinectes sapidus) and white shrimp (Litopenaeus 

setiferus) abundances must be assessed in conjunction with other drivers and at time lags of up to 

two years.   

MAR models have proven to be useful tools to evaluate drivers of species abundances in systems 

where there are many potentially interacting variables with potentially lagged and confounding 

effects (Hampton et al. 2013).  MAR analysis uses long-term monitoring data to estimate the 

directions and strengths of interactions among species and environmental factors within a 

community, therefore the use of this model is limited to cases in which such time-series data are 

available.  Several state and federal long-term monitoring programs that are maintained along the 

Texas coast have generated datasets that fit the criteria for potential analysis with MAR models. 

Phase 1 of this project used the MAR framework with TPWD Coastal Fisheries monitoring data 

from the Mission-Aransas and Guadalupe estuaries to assess potential drivers of the abundances 

of two identified key species, blue crab and white shrimp (Buskey et al. 2015).  Due to the short 

duration of the project, variability in the TPWD dataset was managed by averaging values over 

relatively large spatial and temporal scales, and a limited number of temporal increments and 

model configurations were examined.  The time-series used in the models were averaged into 1 

year, 6 month, and 1 month increments, and effects of potential drivers were tested for at lags of 

0, 1, and 2 time-steps for each of the averaged datasets.  However, the Texas Commission on 

Environmental Quality (TCEQ) establishes environmental flow standards for surface water within 

three-month increments defined as winter (January-March), spring (April-June), summer (July-

September), and fall (October-December).   

Although the results of Phase 1 were informative in pointing to specific lagged effects of drivers 

on blue crab and white shrimp abundances, results from models run on time-series divided into the 

seasonal increments used by TCEQ to set instream flow standards could be more readily used to 

inform freshwater flow management decisions.  In addition, further refinement of the variability 

in the datasets and the extension of the length of the time-series since the completion of Phase 1 

of the project better allow for these finer temporal increments to be modeled. 

The goal of Phase 2 was to refine the models developed during the previous study to improve their 

utility in informing freshwater inflow recommendations.  Specifically, this project aimed to:  

1. Update the datasets used in the original models with 2014-2015 data and rerun the models to 

verify the previous results. 
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2. Reformat the datasets from the seasonal divisions used in the original study to reflect the 

seasonal divisions used in the Texas Commission on Environmental Quality (TCEQ) 

instream flow standards. 

3. Generate MAR models using the new seasonal divisions. 

4. Attempt to identify whether conditions during particular seasons are more influential on 

overall focal species abundances. 

5. Modify the analysis so that trends in focal species abundances can be estimated as a function 

of different hypothetical freshwater inflow conditions. 

Coefficients and R2 values were very similar between the original and updated MAR models, 

verifying that the extension of the time-series did not modify the species interaction patterns 

detected in the original study.  It could therefore be expected that similar patterns would emerge 

from MAR models of the seasonally divided time-series. 

Monthly time-series for all variables used in the final models of the Phase 1 project were averaged 

into 3-month seasonal increments:  January-March (winter), April-June (spring), July-September 

(summer), and October-December (fall).  Using the MAR model structure to analyse these 

seasonal time-series presented several challenges, and ultimately the model was simplified to a 

linear autoregressive formulation.  The final models included the TPWD trawl gear blue crab and 

white shrimp abundance time-series as dependent variables, and each season up to a 2-year lag of 

water temperature (TPWD) and river discharge (U.S. Geological Survey) as predictor variables. 

Estimated abundance time-series calculated from the final model coefficients explained 52% of 

the variability in the measured blue crab time-series and 51% of the variability in the white shrimp 

time-series.  The coefficient values from the models and abundance time-series estimated from 

averaged water temperature or river discharge time-series indicated that trends in blue crab 

abundance were primarily driven by water temperature, while trends in white shrimp abundance 

were primarily driven by river discharge.   

Results from estimating blue crab and white shrimp abundance after either increasing water 

temperature by 1°C or decreasing river discharge by 25% for each season over the entire time-

series were used to determine how conditions in specific seasons affected the overall abundance 

of each species.  Increased water temperatures in summer negatively affected both blue crab and 

white shrimp.  Blue crab were also negatively impacted by increases in temperature in all other 

seasons, while white shrimp had either positive or no responses to temperature increases in the 

other seasons.  A decrease in winter river discharge had a negative effect on blue crab abundance, 

but decreased discharge in the other seasons did not affect their abundance. White shrimp showed 

a positive response to decreased winter discharge, but negative responses to decreased discharge 

in all other seasons. 

The method used in this study to estimate species abundance trends resulting from simple 

manipulations of the seasonal river discharge time-series can be used to evaluate species responses 

to more complex hypothetical discharge scenarios.    
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2.0.0  BACKGROUND 

2.1.0  Texas Parks and Wildlife Department coastal monitoring data 

The Texas Parks and Wildlife Department (TPWD) Coastal Fisheries monitoring program 

maintains a valuable long-term record of the abundances of hundreds of fish and invertebrate 

species that inhabit Texas coastal waters.  Species samples are collected using gill nets, otter trawls, 

and bag seines, and counts of captured individuals are converted to catch per unit effort (CPUE) 

as a measure of abundance.  Basic water quality parameters, such as temperature and salinity, are 

recorded in conjunction with each sample.   For Copano and Aransas bays in the Mission-Aransas 

Estuary and San Antonio and Espiritu Santo bays in the Guadalupe Estuary, species abundance 

data for blue crab (Callinectes sapidus) and white shrimp (Litopenaeus setiferus) are available 

starting in the late 70s and early 80s.  For these key species, the trawl net time-series is considered 

particularly useful for examining long-term trends because this gear type samples a calculable 

volume of water at sites throughout the bays rather than passively sampling or only sampling near 

shore (e.g., Ward 2012). 

2.2.0  Previous studies 

Several previous studies have used the TPWD time-series to investigate possible connections 

between blue crab and white shrimp abundances and freshwater inflows in the Mission-Aransas 

and Guadalupe estuaries.  For white shrimp, the trends in the time-series indicate a strong positive 

connection between their abundance and freshwater inputs.  By dividing the bays into areas of 5 

ppt average salinity increments for months of peak species abundance, TPWD found strong spatial 

relationships between white shrimp abundance and these calculated salinity zones in San Antonio 

Bay (TPWD 1998) and Copano and Aransas bays (TPWD 2010) using the TPWD dataset.  Since 

white shrimp are physiologically tolerant to a wide range of salinities, it has been suggested that 

the apparent relationship between shrimp abundance and salinity is due to an underlying 

correlation between salinity and habitat structure such as vegetation (e.g., Howe et al. 1999).  

However, an analysis of the TPWD dataset by the Guadalupe-San Antonio Basin and Bay Expert 

Science Team (GSA BBEST 2011), which related spatial and temporal white shrimp abundance 

to different freshwater inflow regimes, indicated that shrimp do indeed tend to select fresher 

habitats throughout San Antonio Bay under different inflow regimes.  There may therefore be 

additional factors covarying with salinity that affect the distribution of white shrimp. 

Direct temporal correlations between blue crab abundance and freshwater inflows have been less 

apparent. Ward (2012) examined the TPWD otter trawl data for San Antonio Bay and found that 

neither the individual sampling values nor the monthly averages of the data showed any 

correlations between blue crab abundances and salinity values.  Correlations between monthly 

averaged crab abundance and monthly averaged freshwater inflow at lags up to one year were also 

relatively poor.  The San Antonio Guadalupe Estuarine System project modeled blue crab 

abundance based on data collected in the Aransas National Wildlife Refuge (Slack et al. 2009).  A 
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linear mixed effects model was found to adequately explain short-term variance in juvenile blue 

crab abundance in shallow water, but salinity was a minor component of the model relative to other 

variables such as habitat type and structural complexity.   

Generalized relationships between freshwater inflows and blue crab abundance have been found 

with coarser-scale analyses of the TPWD data.  In their final Environmental Flows 

Recommendations Report, the GSA BBEST (2011) reviewed a study by TPWD in which a 

probabilistic analysis of blue crab abundance in relation to freshwater inflows was conducted.  This 

analysis revealed that the probability of exceeding the mean catch per unit effort (CPUE) increases 

with increasing freshwater inflows.  The TPWD (1998) study that found strong spatial correlations 

between white shrimp and calculated salinity zones reported very similar results for blue crab.  

Hamlin (2005) also found that higher blue crab CPUE in the Guadalupe Estuary was associated 

with calculated zones of lower salinity, which shifted spatially depending on inflow regime.  

Therefore, despite the elusiveness of any direct correlation, it appears that blue crab are impacted 

by some aspect of freshwater inflow or perhaps a combination of covarying drivers. 

2.3.0  Phase 1 summary 

During Phase 1 of this project, completed in August 2015, data from the Texas Parks and Wildlife 

Department (TPWD) Coastal Fisheries monitoring program, U.S. Geological Survey (USGS) flow 

gage stations, and several other sources were acquired for 1982–2013 and analysed using 

multivariate autoregressive (MAR) models to assess the effects of various predators and 

environmental parameters on blue crab and white shrimp abundances in the Mission-Aransas and 

Guadalupe estuaries (Buskey et al. 2015).   

Potential predictor variables of blue crab and white shrimp (focal species) abundances were 

selected for inclusion in preliminary models based on their identification as drivers in previous 

studies, the quality of data available, and their correlations with one another (Table 2-1).  Species 

abundance time-series and river discharge values were log transformed, and the time-series for all 

variables included in the models were z-scored to have means of 0 and standard deviations of 1.  

Coefficients resulting from MAR analysis of these z-scored values could then be interpreted as the 

strengths and directions of interactions between model variables and directly compared to one 

another without additional scaling.  Final model configurations were selected by removing 

predictor variables that exhibited weak or ecologically implausible interactions in preliminary 

models until more simplified and predominantly ecologically feasible models were produced.  The 

time-series for the variables included in the final MAR models were averaged into 1 year, 6 month, 

and 1 month increments and models were run at lags of 0, 1, and 2 time-steps.   
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Table 2-1  List of variables included in Phase 1 blue crab and white shrimp MAR models.  All 

variables were considered in preliminary models.  Variables retained in final models are in black. 

 Blue Crab Model Variables White Shrimp Model Variables 

Focal Species  

Abundances 

Blue crab gill 

Blue crab trawl 

Blue crab seine 

White shrimp trawl 

White shrimp seine 

Predator Species  

Abundances (gill net) 

Red drum 

Black drum 

Spotted seatrout 

Sheepshead 

Gafftopsail catfish 

Ladyfish 

Spotted seatrout 

Gafftopsail catfish 

Hardhead catfish 

Southern flounder 

Commercial Catch Data Crab catch Shrimp catch 

Water Quality (trawl) 

Salinity 

Temperature 

Dissolved oxygen 

Turbidity 

Salinity 

Temperature 

Dissolved oxygen 

Turbidity 

Climate 
River discharge 

North wind prevalence 

River discharge 

North wind prevalence 

 

For blue crab, negative effects of predator fish species (Table 2-1), temperature, and salinity were 

present in all lag 0 models.  Since blue crabs have an approximate life span of up to 2 years, the 

monthly time increment was too short to effectively detect the effects of drivers on crab abundance 

at lags greater than 0.  For the yearly and 6 month divisions, however, positive effects of river 

discharge were seen at lags of both 1 and 2 time-steps. 

For white shrimp, strong negative effects of salinity dominated all lag 0 and monthly temporal 

increment models.  Negative effects of predators and positive effects of river discharge were seen 

at lags of 1 and 2 for the 6 month averaged time-series and at a lag of 1 for the yearly time-series. 

Overall, the models detected significant lagged effects of predators (Table 2-1), water temperature, 

salinity, and river discharge on the abundances of both blue crab and white shrimp, indicating that 

the effects of freshwater inflows on focal species abundances must be assessed in conjunction with 

other drivers and at time lags of up to two years. 
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3.0.0  METHODS 

3.1.0  Data acquisition and preparation 

The final multivariate autoregressive (MAR) models from the Phase 1 portion of the project 

included data from the Texas Parks and Wildlife Department (TPWD) Coastal Fisheries 

monitoring program and from U.S. Geological Survey (USGS) flow gage stations for the time 

period of 1982-2013.  The TPWD and USGS datasets used in the original sets of models were 

updated with 2014-2015 data to yield a 34-year time-series.  Species count data and water quality 

parameter measurements were acquired through email contact with TPWD, and USGS flow gage 

station discharge values were downloaded from https://waterdata.usgs.gov. 

To prepare the data for analysis, the raw, newly acquired data were merged with the raw datasets 

from the original study to create complete time-series spanning 1982-2015.  The species 

abundance survey data provided by TPWD included catch per unit effort (CPUE) values for gill 

net samples, but the values for the otter trawl and seine net samples were raw counts of the number 

of each species caught in each sample.  To calculate CPUE, the trawl values were divided by the 

tow time (in hours) for each sample, and the seine values were divided by the area swept by the 

gear (in hectares) for each sample.  All samples taken in Aransas Bay, Copano Bay, San Antonio 

Bay (including Hynes Bay), and Espiritu Santo Bay were extracted from the datasets, thereby 

excluding samples taken in small, shallow bays and lakes that were not consistently sampled from 

month to month due to the randomized spatial sampling scheme of the survey program.  A time-

series of monthly mean CPUE values within each bay was calculated for all species included in 

the original MAR models.  The salinity and water temperature (°C) measurements taken with the 

trawl samples were aggregated into corresponding monthly time-series. 

River discharge data downloaded from the USGS website contained daily mean river discharge 

values in cubic feet per second.  Stations to extract data from were selected based on their 

downstream proximity to the Mission-Aransas and Guadalupe estuaries and whether their temporal 

coverage corresponded to that of the TPWD time-series.  Data from the Aransas River near 

Skidmore (08189700), Mission River at Refugio (08189500), and Copano Creek near Refugio 

(08189200) gage stations were summed to approximate discharge to the Mission-Aransas Estuary.  

Data from the Guadalupe River at Victoria (08176500) and San Antonio River at Goliad 

(08188500) gage stations were summed to approximate discharge to the Guadalupe Estuary.   

Although the Guadalupe River near Tivoli (08188800) gage station is much closer to the 

Guadalupe Estuary than the Victoria and Goliad stations and would provide a more accurate 

approximation of flows into the estuary, the discharge measurement time-series from this station 

begins in 2000 and therefore only overlaps about half of the TPWD species abundance time-series.  

A comparison of the logged seasonal time-series between the summed Victoria and Goliad station 

discharge and the Tivoli station discharge indicates that mean logged discharge at Tivoli is 4% 

lower than the mean logged discharge at the Victoria/Goliad stations, primarily due to diminished 

https://waterdata.usgs.gov/
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pulse flows at the downstream station.  Most notably, mean discharge values from 3,000-11,700 

cubic feet per second in the Victoria/Goliad time-series are reflected in the Tivoli time-series at or 

near a maximum value of 3,000 cubic feet per second.  Despite these differences, there is a strong 

correlation between the two discharge time-series (Pearson’s product-moment correlation 0.94, 

p<0.001), which indicates that the summed discharge from the Victoria/Goliad stations should 

approximate flow into the Guadalupe Estuary nearly as well as discharge measurements from the 

Tivoli station further downstream. 

3.2.0  Re-run original MAR models 

MAR models with the same temporal divisions, time lags, and variables selected for the final 

models in the original study (Buskey et al. 2015) were run using the updated time-series to verify 

that the major relationships identified by the original models did not change with the addition of 

new data.  For each set of models, all data were averaged into either 1 year, 6 month, or 1 month 

time-steps.  Focal and predator species abundance values (Table 2-1) and river discharge values 

were log-transformed to more closely conform to a normal distribution.  The time-series for all 

model variables were then z-scored to have a means of 0 and a standard deviations of 1.  For the 

yearly time-series, this was done for each variable by subtracting its overall mean for the time-

series from each value, then dividing by its overall standard deviation for the time-series.  For the 

6 month and 1 month time-series, this was done by subtracting the overall mean for the 

corresponding 6 or 1 month division from each value, then dividing by the overall standard 

deviation for the corresponding division.  For example, the z-score for a February value would be 

calculated by subtracting the mean of all February values in the time-series and dividing by the 

standard deviation of all the February values.  This method of standardization removes seasonal 

signals from the time-series and thereby prevents seasonal successions from being interpreted as 

interactions within the MAR models. 

The MAR model described by Ives et al. (2003) can be thought of as a series of regression 

equations with each equation describing the abundance of one of the species included in the model.  

Within each equation, the abundance value for a species at a specific time-step is predicted by its 

abundance value at the previous time-step plus or minus the influences of other species (variates) 

and environmental factors (covariates) included in the model.  In the matrix formulation, Xt is a 

vector of abundance values at time t for the species included in the model, A is a vector in intrinsic 

productivities, Xt-1 is a vector of abundance values for each species at time t-1, Ut-1 is a vector of 

values at time t-1 for the environmental factors included in the model, and E is a vector of process 

errors.  B and C are matrices of coefficients that represent the influence of each species and 

environmental factor, respectively, on the abundances of the species in the model. 

X
t
   =    A   +   BX

t - 1
 +  CU

t - 1
  +   E

t
 

Models were run in R using the code submitted with the Phase 1 study report (Buskey et al. 2015).  

This code consists of modified functions from the MAR1 R package (Scheef 2013) that enable the 
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MAR models to assess potential lag 0 and 2 interactions between variables in addition to lag 1 

interactions. 

As in previous ecological studies that have used MAR analysis (e.g., Hampton et al. 2008), the 

95% confidence bounds for each coefficient in the best-fit models produced by the analysis were 

estimated through bootstrapping (n=500), and only coefficients with confidence bounds not 

overlapping 0 were retained.  The coefficients retained in the bootstrapped models were then 

compared between models run with the original data and models run with the updated data. 

3.3.0  Reformat data into seasonal increments 

To divide the focal species, predator, and environmental variable time-series into the winter, 

spring, summer, and fall increments defined by Texas Commission on Environmental Quality 

(TCEQ) environmental flow standards, the data were first averaged into monthly time-steps.   

All variables included values for every month of each year except for the gill net-sampled blue 

crab and predator fish species.  Gill net samples are only taken during the spring and fall each year, 

so dividing the data into 4 time-steps per year would leave winter and summer gaps in the time-

series for species sampled with this gear type.  Time-steps with missing values are omitted during 

model calculations, so the missing predator values would make it impossible to determine, for 

example, how winter conditions affect blue crab abundance in the spring.  To attempt to include 

the gill net-sampled species in the seasonal models, their abundances for all months were estimated 

by fitting a cubic smoothing spline to the spring and fall sample abundances.  Ultimately, however, 

these estimated species abundance values were not used in the final models and are therefore not 

relevant to the results presented in this report (see section 3.4.2). 

The monthly time-series for each variable to be included in the models was then averaged into 3-

month time-steps:  January-March (winter), April-June (spring), July-September (summer), and 

October-December (fall). 

3.4.0  Seasonal models 

3.4.1  Challenges 

The purpose of using the 3-month seasonal time-steps in the MAR models was to determine the 

effects of conditions during each individual season on focal species abundances.  One of the 

challenges to running the MAR models with the seasonally divided time-series was that the 

original code estimated the coefficients for each species in the model by shifting its time-series 

backward one time-step relative to the time-series for all of the other variables included in the 

model.  If the seasonal time-series are left intact such that all seasons are included in the same 

sequence (i.e., a repeating sequence of winter, spring, summer, and fall values), then shifting the 

time-series of a species backward relative to the other variables in the model will result in 

coefficient estimates that pool the effects of all seasons on its abundance during all corresponding 
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lagged seasons.  In other words, it is not possible to separate out the effects of individual seasons 

with this method. 

An alternative method that still allows for the use of the original code is to separate the time-series 

for each variable into 4 time-series: 1 for each season.  One issue with this method is that using all 

4 time-series for each variable in the same MAR analysis results in a very large number of model 

parameters.  For example, the original blue crab models included the 3 different gear type time-

series for blue crab, 3 potential predator species, and 3 environmental variables, resulting in 9 total 

time-series and 54 potential coefficients to be estimated in the 6×6 B and 6×3 C matrices.  If the 

data for each of these variables were divided into 4 time-series, there would be 36 total time-series 

in the model and 864 potential coefficients to be estimated.  Another issue is that there is no 

straightforward way to set up the input data such that lagging one time-series would align it with 

the appropriate sequence of preceding seasons. 

An attempt was made to run a series of MAR models in which each possible pair of seasons were 

analysed individually, with the set of variables for one season designated as predictors and the set 

for the other season designated as response variables.  For example, a set of models was run to 

determine the effects of conditions during winter, spring, summer, and fall, individually, on the 

abundances of species in the winter, and another set was run to determine the effects of each 

individual season on species abundances in the spring, etc.  These models were run for all lags up 

to 2 years, resulting in 48 separate models for each focal species.  The results of these models were 

somewhat informative, in that large coefficients in some models pointed to strong effects of certain 

variables during specific seasons and lags, and some models had much better fits (higher R2 values) 

than others, which indicated that conditions during specific seasons were generally important.  

However, because the coefficients were spread between many different models with varying fits, 

it was difficult to make direct comparisons between them and draw specific conclusions about 

which variables, seasons, and lags had the strongest effects on blue crab and white shrimp 

abundances. 

To make direct comparisons between the effects of variables during different seasons and lags on 

focal species abundances, it is therefore necessary to include the values for all variables in all 

seasons at all lags in the same model.  As discussed above, this is not possible with the MAR code 

used in Phase 1 of this study.  In addition, the ultimate goal of this analysis was to provide a model 

that can estimate focal species abundance trends by using different freshwater inflow time-series 

as input.  Several features of the original analysis, such as the z-scoring of the data and the inclusion 

of multiple interacting variables potentially affected by freshwater inputs, presented challenges to 

accomplishing this objective.  Therefore, to accomplish the goals of this Phase 2 study, it was 

necessary to restructure the analysis used in Phase 1. 

3.4.2  Revised methods 

To include potential influences of all variables within all seasons at all lags, it was necessary to 

simplify the structure of the MAR model used during Phase 1 of the study.  The model in Phase 1 
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produced an interaction matrix representing the influences of all species in the model on one 

another.  Since we are primarily interested in drivers of focal species abundances, we first 

eliminated the portions of the model assessing drivers of non-focal species (i.e., the predator 

species) abundances. 

The model structure was further simplified by focusing on the otter trawl gear time-series for the 

focal species abundance estimates and omitting the gill net and bag seine time-series for blue crab 

and the bag seine time-series for white shrimp.  Several considerations led to the decision to omit 

the gill and seine data:  1) Preliminary models for the seine time-series of both focal species had 

very poor fits (low R2 values), as was the case for the final models in the Phase 1 study (see section 

4.2.0, Figures 4-7 and 4-8).  2) As discussed above, the gill net time-series for blue crab contained 

estimated values for 2 of the 4 seasons, so omitting this time-series prevented the use estimated 

abundance values in the final models.  3) Samples for the gill net and bag seine gear types were 

only collected along shorelines, so data from these gears would be expected to be less 

representative of abundances throughout the bays than the trawl gear data.  4) The otter trawl 

selectively samples for larger blue crab (1st-3rd quartile range ~45-99 mm) and white shrimp (~81-

107 mm) than the bag seine (~18-38 mm for blue crab and ~42-69 mm for white shrimp).  

Assuming larger individuals are usually older, the lagged effects of previous conditions should be 

better reflected by abundances based on trawl samples than abundances based on seine samples.  

Therefore, the trawl data were considered the most appropriate estimates of seasonal focal species 

abundances for the models in this study. 

Eliminating the parts of the original model that addressed drivers of non-focal species abundances 

and omitting the gill and seine focal species data shifted the original model structure from a matrix 

formulation to independent linear models of the trawl abundances of each focal species.  In other 

words, the trawl abundance time-series for each species was the only response variable left in the 

model formula.  Since the coefficients in these models no longer represented interactions between 

species that needed to be directly comparable to one another, it was no longer necessary to z-score 

the time-series prior to analysis.  Using non-z-scored data in these models makes the results easier 

to interpret and facilitates comparisons to models estimated in other studies. 

Although the response variables were reduced to a single time-series for each focal species, the 

number of predictor variables in the models for each species was still very large (73 for blue crab, 

49 for white shrimp) due to all of the time-series being split by season.  In addition, several of the 

predictor variables, including salinity and predator species abundances, are also affected by 

freshwater inflows.  This means that to include these variables as predictors of focal species 

abundances in the final models with varying freshwater input scenarios, their values would have 

to be estimated as a function of freshwater inflows as well.  Such estimations would introduce 

increased error and cross-correlations into these final models, and preliminary analyses revealed 

that removing the effects of these variables did not greatly reduce model fits (decreases in R2 

values were less than 0.05).  Therefore, predator species and salinity were omitted as predictor 

variables. 
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The omission of gill net, bag seine, predator species, and salinity time-series from the analysis 

resulted in relatively simplified structures for the blue crab and white shrimp models, with 25 

potential coefficient estimates within each blue crab model and 17 potential coefficient estimates 

within each white shrimp model.  For blue crab, the trawl sample abundance for each season was 

estimated as a function of blue crab trawl abundance during the preceding season, temperature for 

each season at lags of 0, 1, and 2 years, and river discharge for each season at lags of 0, 1, and 2 

years.  White shrimp trawl sample abundance was estimated the same way, except since the white 

shrimp life cycle takes place within the span of a single year, lags greater than 1 year were not 

included.  White shrimp abundance for each season was therefore estimated as a function of its 

abundance during the preceding season, temperature for each season at lags of 0 and 1 years, and 

river discharge for each season at lags of 0 and 1 years.  Cross-correlations between the seasonal 

time-series for the 2 remaining environmental variables included in these models, water 

temperature and river discharge, were minimal (Pearson’s correlation coefficients <0.1) and not 

significant at any lag up to 2 years (p>0.05). 

Data from Espiritu Santo Bay were included in the original models, but correlations between this 

bay and Aransas, Copano, and San Antonio bays for many measured parameters were low relative 

to correlations between the latter three bays (Table 3-1).  These mismatched correlations indicate 

that conditions in Espiritu Santo Bay are not well-aligned with the rest of the system, possibly due 

to southward water flow tending to isolate this northernmost bay from the rest of the estuary (GSA 

BBEST 2011).  Inclusion of data from this bay in the new models could therefore obscure 

relationships, so it was decided to omit data from this bay from the analysis. 

Table 3-1  Pearson correlation coefficients between bays for seasonally averaged time-series of 

parameters measured during TPWD trawl surveys. 

Parameter 
Bay Correlations 

 Copano San Antonio Espiritu Santo 

ln Blue crab 

abundance 

Aransas 0.78 0.64 0.44 

Copano - 0.66 0.35 

San Antonio - - 0.59 

ln White shrimp 

abundance 

Aransas 0.71 0.63 0.62 

Copano - 0.74 0.54 

San Antonio - - 0.63 

Water 

temperature 

Aransas 0.99 0.99 0.97 

Copano - 0.99 0.97 

San Antonio - - 0.98 

Salinity 

Aransas 0.86 0.77 0.66 

Copano - 0.85 0.67 

San Antonio - - 0.84 
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Best-fit models were selected by conducting an exhaustive search of possible model configurations 

and using the Bayesian Information Criterion (BIC) as an assessment of model complexity versus 

fit.  Although the Akaike Information Criterion (AIC) is commonly used for model selection, it 

imposes a smaller penalty for model complexity than BIC, which, in this analysis, resulted in larger 

model structures with seemingly redundant terms that did not greatly improve model fit and made 

the results more difficult to interpret than the models selected with BIC. 

All data and R code used to compose the final models were annotated and submitted with this 

report. 

3.5.0  Model input time-series manipulation 

The final best-fit models were used to calculate hypothetical focal species time-series by altering 

the predictor variable time-series.  This was done in two ways to assess:  a) the relative influence 

of each predictor variable on focal species abundance trends, and b) how focal species abundances 

might be affected if the mean values of the predictor variables change in the future. 

To determine the relative influences of river discharge and water temperature on the abundance 

trends of each focal species, the final models were used to calculate new species abundance time-

series for runs where one of the predictor variables was set to its seasonal averages and the other 

variable remained unaltered.  For example, to examine the effects of river discharge on blue crab 

abundance, each value in the water temperature time-series was set to its overall seasonal average, 

and a new blue crab time-series was calculated based on the original discharge input and the 

averaged water temperature input.  By replacing the temperature time-series with average values, 

any non-seasonal temporal trends in temperature were removed, and therefore any non-seasonal 

trends in the newly calculated species abundance time-series can be attributed solely to temporal 

variability in river discharge.  How well each newly calculated species abundance time-series 

matches up with the original estimated abundance time-series can then be compared to determine 

the relative influence of each predictor variable on species abundance trends.   

How focal species abundances might change in response to future water temperature increases or 

river discharge decreases is of interest in the context of climate and land use change.  To determine 

the effects of temperature increase, separate models were run with a 1°C temperature increase for 

each individual season.  For river discharge, individual models were run for a 25% decrease in 

discharge in each season.  This method not only allows for an assessment of how changes in each 

variable affect species abundance overall, but also provides a measure of how the importance of 

the variable differs between seasons.   
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4.0.0  ANALYSIS AND RESULTS 

4.1.0  Updated data 

Data used in the final models of the Phase 1 study included time-series of focal and predator 

species abundances as well as temperature, salinity, and river discharge that spanned 1982–2013.  

The Texas Parks and Wildlife Department (TPWD) Costal Fisheries monitoring program was the 

source for the species abundance data and water quality data, and river discharge data were derived 

from U.S. Geological Survey (USGS) flow gage station measurements.  Below are plots of these 

time-series updated with 2014-2015 values.  General temporal trends as well as multivariate 

autoregressive (MAR) model results generated from these updated data are similar to those seen 

in the results of the Phase 1 study. 

4.1.1  Focal Species 

Overall temporal trends for blue crab and white shrimp were not greatly affected by the addition 

of the new data (Figure 4-1).  Generally, decreasing trends persisted in the blue crab time-series, 

and no increasing or decreasing trends emerged in the white shrimp time-series.  For the 2014-

2015 time period, blue crab abundance estimates were below the overall average during 2014, and, 

with the exception of blue crab in the otter trawl samples, values were above average during 2015.  

For white shrimp, trawl sample estimates were below average in 2014 and slightly above average 

in 2015, and seine sample estimates were above average for both years. 
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Figure 4-1  Updated focal species abundance trends (z-scored yearly means) for blue 

crab seine, trawl, and gill samples and white shrimp seine and trawl samples.  Lines 

represent mean abundances for Copano (green), Aransas (blue), San Antonio (yellow), 

and Espiritu Santo (red) bays.  Yearly means across all four bays are represented by 

bars colored to indicate whether values fall above (blue) or below (red) the overall 

mean for the time-series.  Regression lines for the bay-averaged time-series are shown 

as black dotted lines. 

4.1.2  Predator Species 

Overall, increasing abundance trends continue to be seen for all of the selected predators, with the 

exception of southern flounder, which demonstrates a decreasing trend (Figure 4-2).  Red drum 

abundance estimates were consistently below average for 2014-2015, extending a sequence of 

below average abundance values at the end of the time-series to 4 years.  After a 7 year period of 

above average abundances starting in 2008, black drum abundance fell below average in 2015.  

Spotted seatrout abundance estimates were slightly above average in 2014 and slightly below 

average in 2015.  Southern flounder abundance was below average in 2014 and above average in 

2015, making 2015 one of only 3 years of above average abundance since 2005. 
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Figure 4-2  Updated abundance trends (z-scored yearly means) for predator species 

included in final MAR models in Phase 1 of the project.  Lines represent mean 

abundances for Copano (green), Aransas (blue), San Antonio (yellow), and Espiritu 

Santo (red) bays.  Yearly means across all four bays are represented by bars colored to 

indicate whether values fall above (blue) or below (red) the overall mean for the time-

series.  Regression lines for the bay-averaged time-series are shown as black dotted 

lines. 

4.1.3  Water Quality 

The overall increasing trends in both water salinity and temperature persist with the additional 

2014-2015 data (Figure 4-3).  A sequence of above average water salinities that began in 2011 

continued through 2014, but heavy rains in early 2015 drove mean salinity for the year below 

average.  Water temperature was below average in 2014, as it had been in 2013, but was above 

average again in 2015. 

 

 

Figure 4-3  Updated temporal trends (z-scored yearly means) for TPWD trawl sample 

water quality parameters included in final MAR models in Phase 1 of the project.  
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Lines represent means for Copano (green), Aransas (blue), San Antonio (yellow), and 

Espiritu Santo (red) bays.  Yearly means across all four bays are represented by bars 

colored to indicate whether values fall above (blue) or below (red) the overall mean 

for the time-series.  Regression lines for the bay-averaged time-series are shown as 

black dotted lines. 

4.1.4  River Discharge 

A slight decreasing trend is seen in the updated river discharge time-series (Figure 4-4).  A period 

of below average river discharge that began in 2011 continued through 2014.  River discharge was 

above average in 2015. 

 

 

Figure 4-4  Updated temporal trends (z-scored yearly means) for river discharge.  Lines 

represent means for the Mission-Aransas Estuary (green) and Guadalupe Estuary 

(yellow).  Overall yearly means for each variable are represented by bars colored to 

indicate whether values fall above (blue) or below (red) the overall mean for the time-

series.  Regression lines for the averaged time-series are shown as black dotted lines. 
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4.2.0  Updated MAR models 

 

There was generally very good agreement between the results of the MAR analyses run with the 

updated data and the original MAR models.  Overall, comparisons of coefficient values between 

the original and updated focal species models revealed strong correlations and no significant 

differences between the final model structures at any lag or temporal division (Table 4-1).   

Table 4-1  Kendall rank correlation coefficients for comparisons between original and updated 

MAR model coefficient values for blue crab and white shrimp.  All p-values are <0.001. 

Temporal 
division 

 Kendall’s τ 

Lag _Blue crab models_ _White Shrimp models_ 

 0 0.90 0.81 

years 1 0.84 0.76 

 2 0.75 0.84 

 0 0.91 0.93 

6-month 1 0.74 0.91 

 2 0.86 0.88 

 0 0.91 0.98 

months 1 0.85 0.94 

 2 0.72 0.90 

 

However, slight differences between coefficient values did occur.  Several coefficients that were 

present in the original models were omitted from the updated models or vice versa.  This happened 

in the models for both blue crab (Figure 4-5) and white shrimp (Figure 4-6) and resulted in slightly 

lower correlation values between models where it occurred most frequently.  In the majority of 

these cases the non-zero coefficients were <0.1 (see Appendix A for coefficient values of original 

and updated MAR models).  In a few of the blue crab models, coefficients switched signs from 

positive to negative or negative to positive between the original and updated models (Figure 4-5).  

However, this did not happen frequently and all of the coefficient values for which this occurred 

were <0.06, so it did not greatly affect model comparisons.  None of the coefficients in the white 

shrimp models switched signs between the original and updated models (Figure 4-6). 

Since the coefficients between original and updated models were extremely similar, the R2 values 

for the regressions for each species included in the models were also very similar.  For the blue 

crab models, all differences between R2 values were <0.1 (Figure 4-7).  For the white shrimp 

models, all differences between R2 values were <0.05 (Figure 4-8).  See Appendix B for R2 and 

conditional R2 values for the regressions for each species included in the original and updated blue 

crab and white shrimp MAR models.  
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Figure 4-5  Plots of updated vs. original interaction coefficient values (effects of column variables 

on row variables) for lag 0 (squares), lag 1 (triangles), and lag 2 (circles) blue crab MAR 

models run on yearly, 6-month, and monthly time-series.  Colors indicate whether coefficients 

were positive in both original and updated models (green), negative in both models (black), 0 in 

one model and non-zero in the other (yellow), or switched signs between models (red).  For 

each individual interaction plot, axis limits are ±0.75, horizontal and vertical dotted lines mark 0 

on each axis, and a solid diagonal line marks the 1:1 ratio.  
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Figure 4-6  Plots of updated vs. original interaction coefficient values (effects of column 

variables on row variables) for lag 0 (squares), lag 1 (triangles), and lag 2 (circles) 

white shrimp MAR models run on yearly, 6-month, and monthly time-series.  Colors 

indicate whether coefficients were positive in both original and updated models 

(green), negative in both models (black), 0 in one model and non-zero in the other 

(yellow), or switched signs between models (red).  For each individual interaction 

plot, axis limits are ±0.75, horizontal and vertical dotted lines mark 0 on each axis, and a 

solid diagonal line marks the 1:1 ratio.  
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Figure 4-7  Plots of updated vs. original R2 values for the regressions for each species 

included in the lag 0 (squares), lag 1 (triangles), and lag 2 (circles) blue crab MAR 

models run on yearly, 6-month, and monthly time-series.  Colors indicate which 

species each point represents (see key). 

 

Figure 4-8  Plots of updated vs. original R2 values for the regressions for each species 

included in the lag 0 (squares), lag 1 (triangles), and lag 2 (circles) white shrimp MAR 

models run on yearly, 6-month, and monthly time-series.  Colors indicate which 

species each point represents (see key).  



21 

 

4.3.0  Seasonal time-series 

Of the four variables selected for inclusion in the seasonal models (blue crab trawl abundance, 

white shrimp trawl abundance, river discharge, and water temperature), river discharge was the 

only variable that did not demonstrate a clear seasonal trend (Figure 4-9).  Blue crab and white 

shrimp abundances demonstrated clear seasonal cycles, and, for both species, abundances in the 

winter and spring and in the summer and fall tended to follow similar temporal trends between 

years.   

Blue crab abundance usually peaks in the spring, although the peak occurs in the winter during a 

few years.  On average, lowest abundance occurs in the fall, and intermediate values are seen in 

the winter and spring.  The overall decreasing trend in blue crab abundance is strongest for winter 

abundances, but also much stronger in the spring relative to fall and winter (Figure 4-10). 

White shrimp abundance peaks in the summer and fall and is lowest during the winter and spring.  

Although slightly higher abundance values occur in the fall than in the summer on average, 

summer abundance has been higher than fall abundance for most years since 2004 (Figure 4-9).  

This pattern can also be seen as a decreasing trend in fall shrimp abundance anomalies (Figure 4-

10). 

River discharge does not follow any distinct seasonal trends (Figure 4-9) or any clear differences 

in anomaly trends between seasons (Figure 4-10).  The only discernible seasonal pattern is that 

during years of relatively low flow for all seasons, summer discharge values are often lowest 

(Figure 4-9).  A slight decreasing trend in discharge over time occurs for all seasons, but it is 

relatively stronger for the winter and spring seasons (Figure 4-10). 

Water temperature demonstrated the strongest seasonal trend of any of the variables, with a clear 

peak in the summer and low in the winter (Figure 4-9).  For consecutive seasons, value ranges 

overlap from spring to summer and from fall to winter, but not from winter to spring or summer 

to fall, creating a clear division between fall/winter and spring/summer water temperature 

conditions.  The fall/winter temperature values are also more variable between years than the 

spring/summer values.  The overall increasing trend of water temperature over time is most 

strongly reflected in values for the spring season (Figure 4-10). 
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Figure 4-9  Average seasonal trends in blue crab abundance, white shrimp abundance, river 

discharge, and water temperature time-series.  Winter (Jan-Mar), spring (Apr-Jun), summer 

(Jul-Sep), and fall (Oct-Dec) values are shown in blue, green, red, and orange, respectively.  
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Figure 4-10  Yearly positive (blue) and negative (red) deviations from mean values by 

season for blue crab abundance, white shrimp abundance, river discharge, and water 

temperature.  Regression lines for each season and variable are shown as solid gray 

lines (p<0.05) or dotted gray lines (p>0.05).  



24 

 

4.4.0  Seasonal models 

4.4.1  Blue crab 

Each of the seasonal models for blue crab explained at least half of the variance in the blue crab 

abundance time-series for the respective season, except for the fall model (Table 4-2).  The lower 

R2 value for the fall model is not surprising, however, since fall is the season of lowest abundance 

for blue crab (Figure 4-9) and the model was unable to account for losses due to reproductive 

females migrating out of the estuary. 

The largest coefficients in the crab abundance models (Table 4-2) indicate that their abundance 

was strongly dependent on how many crabs were present in the preceding season, that freshwater 

inputs in winter at a lag of 1 year had a positive influence on their abundance, and that summer 

water temperatures at a 2 year lag had a negative influence on their abundance.  While all water 

temperature coefficients are negative, river discharge coefficients are a mix of positive and 

negative coefficients that mostly cancel one another out.  A possible explanation for this is that 

freshwater inputs may have different effects on different life stages of blue crab.  For example, 

adult crabs may enjoy immediate benefits of higher inflows, but perhaps their recruitment or 

survival as juveniles suffered negative effects of inflows during a previous year.  It is also possible 

that freshwater inputs are having the same effects on crabs and their predators, but at different lags, 

so the effects of predation are manifesting indirectly as negative discharge coefficients. 

Table 4-2  Blue crab (trawl) model coefficients and R2 values.  Positive coefficients are shown 

in green, negative coefficients are shown in red.  For each Y season model, p<0.001.  For each 

model coefficient, p<0.05 except for water temperature in the summer Y season model (p=0.06). 
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When the fitted values from the 4 seasonal models are realigned into a single continuous time-

series, there is good overall agreement with the original measured crab abundance time-series 

(Figure 4-11; Table 4-3).  Although the R2 value for the whole estimated time-series is relatively 

high, indicating that 67% of the variance in measured blue crab abundance is explained, this time-

series was fitted using the measured values of crab abundance as a density dependent term.  The 

coefficients for density dependence in the models were relatively large (Table 4-2), so at least part 

of the fit can be attributed to the model using the actual measured abundance values to generate 

the estimated abundance values. 

 

Figure 4-11  Measured time-series of blue crab abundance (gray) and fitted value time-

series of model-estimated blue crab abundance (red) by bay.  Regression lines of 

abundance over time for each time-series are shown as dotted lines. 

Table 4-3  Sums of squares and R2 values for fitted value time-series of model-estimated blue 

crab abundance for each bay and all bays together.   

 Regression 

SS 

Residual 

SS R2 

 

Aransas Bay 58 34 0.67  

Copano Bay 75 35 0.63  

San Antonio Bay 114 59 0.66  

All bays 260 127 0.67  

 

A better assessment of model performance is to use the model coefficients to calculate a new 

abundance time-series one time-step at a time, so that each new estimate is based off of the 

estimated abundance value at the previous time-step rather than measured abundance.  For each 

bay, overall mean blue crab abundance for fall was used to calculate the initial winter abundance 

estimate in the time-series.  As expected, this calculated time-series did not follow the measured 

abundance time-series as well as the fitted model values did, but over half of the overall variance 

in abundance is still explained and the overall decreasing trend in abundance is reproduced (Figure 
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4-12; Table 4-4).  The R2 values for this calculated time-series are relatively low because the model 

was unable to account for some of the higher peaks in abundance in the first half of the time-series 

and some of the lower abundances later in the time-series (Figure 4-12).  This may be due to non-

linear effects of temperature or effects of other variables not included in the model.  The R2 for 

Aransas Bay was also low relative to the other bays (Table 4-4), possibly because it is affected by 

freshwater inflows in both estuaries, but in the model it was set to respond to discharge values for 

the Mission-Aransas Estuary. 

 

Figure 4-12  Measured time-series of blue crab abundance (gray) and calculated time-

series of blue crab abundance based on step-wise crab abundance estimates (blue) by 

bay.  Regression lines of abundance over time for each time-series are shown as dotted 

lines. 

Table 4-4  Sums of squares and R2 values for calculated time-series of blue crab abundance 

based on step-wise crab abundance estimates for each bay and all bays together.   

 Regression 

SS 

Residual 

SS R2 

 

Aransas Bay 35 56 0.38  

Copano Bay 63 47 0.58  

San Antonio Bay 89 83 0.52  

All bays 201 186 0.52  
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4.4.2  White shrimp 

The spring and summer models for white shrimp explained about half of the variance in the white 

shrimp abundance time-series for the respective seasons, and the fall and winter models explained 

just under 40% of variance in white shrimp abundance during those seasons (Table 4-5).  As with 

the fall blue crab model, the lower R2 values for the fall and winter white shrimp models may be 

related to their inability to account for changes in abundance due to migratory movement during 

those seasons. 

The largest coefficients in the shrimp abundance models (Table 4-5) indicate strong density 

dependence of winter and spring shrimp abundances on their abundances during the respective 

preceding seasons, freshwater inputs in summer had a positive effect on abundances during the 

same summer and fall, winter discharge had a strong negative effect on summer abundances at a 

lag of 1 year, and summer water temperatures had a negative effect on fall abundances the same 

year.  Aside from the negative coefficient in the fall model, all water temperature coefficients 

consisted of positive winter and spring values in the winter and spring models.  River discharge 

coefficients were all positive except for the large coefficient for 1 year lag winter discharge in the 

summer model.  As with the blue crab model, this coefficient may be the result of freshwater inputs 

negatively affecting recruitment or survival of an earlier life stage of the shrimp.   

Table 4-5  White shrimp (trawl) model coefficients and R2 values.  Positive coefficients are 

shown in green, negative coefficients are shown in red.  For each Y season model, p<0.001.  For 

each model coefficient, p<0.05. 
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When the fitted values from the 4 seasonal models are realigned into a single continuous time-

series, there is good overall agreement with the original measured shrimp abundance time-series 

(Figure 4-13; Table 4-6).  Similar to the blue crab model, the R2 value for the whole estimated 

time-series is relatively high, indicating that 63% of the variance in measured white shrimp 

abundance is explained (Table 4-6).  However, this time-series was fitted using the measured 

values of shrimp abundance as a density dependent term, so at least part of the fit can be attributed 
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to the model using the actual measured abundance values to generate the estimated abundance 

values. 

 

Figure 4-13  Measured time-series of white shrimp abundance (gray) and fitted value 

time-series of model-estimated white shrimp abundance (red) by bay.  Regression 

lines of abundance over time for each time-series are shown as dotted lines. 

Table 4-6  Sums of squares and R2 values for fitted value time-series of model-estimated white 

shrimp abundance for each bay and all bays together.   

 Regression 

SS 

Residual 

SS R2 

 

Aransas Bay 98 112 0.63  

Copano Bay 195 142 0.47  

San Antonio Bay 229 89 0.72  

All bays 579 342 0.63  

 

A less biased assessment of model performance was attained by using the model coefficients to 

calculate a new abundance time-series one time-step at a time, so that each new estimate was based 

off of the estimated abundance value at the previous time-step rather than measured abundance.  

For each bay, mean white shrimp abundance for fall was used to calculate the initial winter 

abundance estimate in the time-series.  As expected, this calculated time-series did not follow the 

measured abundance time-series as well as the fitted model values did, but over half of the overall 

variance in abundance is still explained (Figure 4-14; Table 4-7).  The R2 values for this calculated 

time-series are relatively low because the model was unable to account for some anomalous high 

and low values in Aransas and Copano bays and some of the lower abundances in the San Antonio 

bay time-series (Figure 4-14). 
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Figure 4-14  Measured time-series of white shrimp abundance (gray) and calculated 

time-series of white shrimp abundance based on step-wise shrimp abundance 

estimates (blue) by bay.  Regression lines of abundance over time for each time-series 

are shown as dotted lines. 

Table 4-7  Sums of squares and R2 values for calculated time-series of white shrimp abundance 

based on step-wise shrimp abundance estimates for each bay and all bays together.   

 Regression 

SS 

Residual 

SS R2 

 

Aransas Bay 75 135 0.36  

Copano Bay 132 205 0.39  

San Antonio Bay 203 114 0.64  

All bays 467 454 0.51  
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4.5.0  Effects of changes in river discharge and water temperature 

4.5.1  Blue crab 

To assess the effects of water temperature on non-seasonal temporal trends in blue crab abundance, 

the values for river discharge in the time-series were set to their overall seasonal means and a new 

time-series of crab abundance was calculated.  Likewise, to assess the effects of discharge on blue 

crab abundance trends, the long-term effects of temperature were neutralized by setting all 

temperature values to their overall seasonal means.  A visual comparison of the original calculated 

abundance time-series, the calculated temperature effects time-series, and the calculated discharge 

effects time-series reveals that water temperature is responsible for the primary long-term trends 

seen in the blue crab abundance time-series (Figure 4-15).  A clear decreasing trend is still apparent 

when the effects of water temperature are isolated, but disappears when the effects of river 

discharge are isolated. 
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Figure 4-15  Time-series of measured blue crab abundance (gray), calculated blue crab 

abundance (blue), calculated blue crab abundance with the non-seasonal effects of 

river discharge removed (orange) to isolate the effects of water temperature on 

abundance trends, and calculated blue crab abundance with the non-seasonal effects of 

water temperature removed (green) to isolate the effects of river discharge on 

abundance trends. 
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The response of mean blue crab abundance to changes in water temperature during each season 

was tested by increasing temperature values by 1°C for each season individually and calculating 

new crab abundance time-series based on these altered values.  A 1°C increase in water 

temperature in any season resulted in overall decreases in blue crab abundance by at least 13% 

compared to abundance with no temperature change (Figure 4-16).  This was primarily due to 

negative impacts on spring abundances across the board, but additional negative effects on winter 

abundances with increased winter and summer water temperatures resulted in the largest overall 

abundance decreases of 18 and 19%, respectively. 

 

Figure 4-16  Seasonal and overall blue crab abundance means calculated using water 

temperature time-series in which a 1°C increase was applied to each season 

individually.  Each set of bars represents seasonal abundance means that resulted from 

altering the conditions for a specific season.  Horizontal dotted lines represent the 

overall abundance mean for each set of bars, and the corresponding percentage values 

give the change in mean abundance relative to a baseline value associated with no 

change in seasonal conditions. 

The response of mean blue crab abundance to changes in river discharge during each season was 

tested by decreasing river discharge by 25% for each season individually and calculating new crab 

abundance time-series based on these altered values.  For examples of blue crab abundance 

estimation based on river discharge time-series from various TCEQ Water Availability Model flow 

scenarios, see Appendix C.  Mean blue crab abundance only responded to a winter discharge 
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decrease, with a decrease in overall abundance by about 4% due to negative impacts on their winter 

and spring abundances (Figure 4-17). 

 

Figure 4-17  Seasonal and overall blue crab abundance means calculated using river 

discharge time-series in which a 25% decrease was applied to each season 

individually.  Each set of bars represents seasonal abundance means that resulted from 

altering the conditions for a specific season.  Horizontal dotted lines represent the 

overall abundance mean for each set of bars, and the corresponding percentage values 

give the change in mean abundance relative to a baseline value associated with no 

change in seasonal conditions. 

Overall, these results indicate that blue crab abundance is more sensitive to changes in water 

temperature than to changes in freshwater inflow conditions, and, correspondingly, their long-term 

abundance trends reflect variability in temperature trends.  Although river discharge does affect 

blue crab abundance, it would take relatively large changes in discharge conditions to have a 

substantial impact on blue crab abundance.  For example, to see the same level of impact that a 

temperature increase of 1°C had on crab abundance, discharge would have to be reduced by 80%. 
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4.5.2  White shrimp 

To assess the effects of water temperature on non-seasonal temporal trends in white shrimp 

abundance, the values for river discharge in the time-series were set to their overall seasonal means 

and a new time-series of shrimp abundance was calculated.  Likewise, to assess the effects of 

discharge on white shrimp abundance trends, the long-term effects of temperature were neutralized 

by setting all temperature values to their overall seasonal means.  A visual comparison of the 

original calculated abundance time-series, the calculated temperature effects time-series, and the 

calculated discharge effects time-series reveals that, while water temperature is responsible for 

some of the inter-annual variability seen in the white shrimp abundance time-series, the primary 

long-term abundance patterns more closely follow the isolated effects of river discharge (Figure 

4-18). 
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Figure 4-18  Time-series of measured white shrimp abundance (gray), calculated white 

shrimp abundance (blue), calculated white shrimp abundance with the non-seasonal 

effects of river discharge removed (orange) to isolate the effects of water temperature 

on abundance trends, and calculated white shrimp abundance with the non-seasonal 

effects of water temperature removed (green) to isolate the effects of river discharge 

on abundance trends. 
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The response of mean white shrimp abundance to changes in water temperature during each season 

was tested by increasing temperature values by 1°C for each season individually and calculating 

new shrimp abundance time-series based on these altered values.  Higher temperatures in the 

winter and spring resulted in increases in white shrimp abundance by 10 and 6%, respectively 

(Figure 4-19).  The largest impact on abundance was an 18% decrease due to higher summer water 

temperatures.  Increasing fall water temperature had no impact on shrimp abundance. 

 

Figure 4-19  Seasonal and overall white shrimp abundance means calculated using water 

temperature time-series in which a 1°C increase was applied to each season 

individually.  Each set of bars represents seasonal abundance means that resulted from 

altering the conditions for a specific season.  Horizontal dotted lines represent the 

overall abundance mean for each set of bars, and the corresponding percentage values 

give the change in mean abundance relative to a baseline value associated with no 

change in seasonal conditions. 

The response of mean white shrimp abundance to changes in river discharge during each season 

was tested by decreasing river discharge by 25% for each season individually and calculating new 

shrimp abundance time-series based on these altered values.  For examples of white shrimp 

abundance estimation based on river discharge time-series from various TCEQ Water Availability 

Model flow scenarios, see Appendix C.  White shrimp abundance responded negatively to 

decreases in discharge, with the exception of an 8% positive response to the decrease in winter 

discharge (Figure 4-20).  The largest decrease in abundance (8%) was seen for the decrease in 
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summer discharge.  All changes in mean abundance resulted from changes in summer and fall 

abundances. 

 

Figure 4-20  Seasonal and overall white shrimp abundance means calculated using river 

discharge time-series in which a 25% decrease was applied to each season 

individually.  Each set of bars represents seasonal abundance means that resulted from 

altering the conditions for a specific season.  Horizontal dotted lines represent the 

overall abundance mean for each set of bars, and the corresponding percentage values 

give the change in mean abundance relative to a baseline value associated with no 

change in seasonal conditions. 

Overall, white shrimp abundance responds to both water temperature and river discharge, and the 

direction of their response depends on which season fluctuations in those variables occur.  

However, since their long-term trends more closely follow variation in discharge, it appears their 

abundance is more sensitive overall to changes in freshwater inflows than to changes in water 

temperature. 
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5.0.0  CONCLUSIONS 

The division of the time-series for blue crab abundance, white shrimp abundance, and the other 

model variables into seasonal time-steps presented obstacles to using the original multivariate 

autoregressive (MAR) analysis methods from Phase 1 of the project.  While the original methods 

employed a matrix formulation in which interactions between multiple species in the model were 

estimated, the seasonal temporal divisions of the data made it necessary to simplify the model 

structure such that only density dependence and the effects of water temperature and river 

discharge on the focal species were considered.  The omission of predator species and salinity as 

predictors in the models had minimal effects on overall model fits (decreases in R2 < 0.05). 

Model results indicate that higher summer water temperatures negatively affect both blue crab and 

white shrimp.  Simulations of a 1°C temperature increase for each season confirmed that the largest 

decreases in abundance for the focal species resulted from high summer temperatures.  Blue crab 

abundance also decreased in response to temperature increases in all other seasons.  White shrimp 

abundance responded negatively to higher spring and fall temperatures, but positively to higher 

winter water temperature.  The overall negative impact of water temperature increase on both focal 

species is an important finding, in that the temperature time-series in this study exhibits an average 

increasing trend of about 0.024 °C per year. 

The effects of river discharge on blue crab abundance were difficult to resolve from model results 

alone.  Coefficients for the effects of discharge on blue crab often appeared with different signs in 

the same model, indicating the presence of both positive and negative effects at different time lags.  

A simulation of blue crab abundance with an altered discharge time-series revealed that a decrease 

in discharge has an overall negative impact on blue crab, but that relatively large changes in 

discharge would be necessary to influence their long-term abundance to the extent that water 

temperature does. 

Model results for white shrimp indicate that river discharge has an overall positive effect on their 

abundance, although there was one negative coefficient indicating that high winter discharge at a 

1 year lag negatively affects shrimp abundance.  A simulation of a decrease in river discharge 

revealed a positive effect of winter discharge decrease on white shrimp abundance, but negative 

impacts of reduced discharge in all other seasons.  Overall, the results of this study indicate that 

river discharge is the primary driver of long-term white shrimp abundance trends relative to water 

temperature, and decreases in discharge negatively impact white shrimp abundance. 
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6.0.0  FUTURE DIRECTIONS 

This study was successful in developing a model in which different hypothetical freshwater flow 

conditions could be used to assess how various changes in flows would affect the abundances of 

blue crab and white shrimp.  However, only a very basic simulation of an overall 25% decrease in 

discharge was tested in this study.  Testing the effects of more complex flow patterns, such as 

altering the frequency of pulsed flows or magnitude of high flow events could potentially provide 

better insight into the effects of freshwater inflows on focal species.  Use of output from the water 

availability model (WAM) that is used by Texas Commission on Environmental Quality (TCEQ) 

to evaluate water rights applications could also be used to assess the potential effects that different 

water right usage patterns could have on blue crab and white shrimp abundances.  An example of 

such an analysis for 4 different WAM flow scenarios is presented in Appendix C.  This same type 

of analysis could also be used to evaluate how flow scenarios resulting from changes to TCEQ 

instream flow standards might affect species abundances. 

Although the original structure of the MAR model was not conducive to analysing seasonal time-

series of species sampled by gill net in only the spring and fall, the revised modeling method 

developed in this study is able to handle missing seasons for the response variable without omitting 

the effects of corresponding seasons for the predictor variables.  This means that the revised model 

could potentially be applied to gill net-sampled species, such as red drum, black drum, spotted 

seatrout, and southern flounder to assess the effects of water temperature and river discharge on 

their abundances.  Additional species sampled by the other gear types, such as oysters, and the 

species size and sex data recorded for some of the sampled species could also be considered for 

future analysis with this model. 

The spatial coverage of this study was restricted to the Mission-Aransas and Guadalupe estuaries.  

Extending the coverage to additional estuaries, such as the Colorado-Lavaca and Nueces estuaries 

would greatly increase the number of available data points the model can use to estimate the effects 

of temperature and discharge on species abundances.  Additionally, since estuarine conditions are 

known to vary along a latitudinal gradient on the Texas coast, regional differences in how species 

respond to environmental conditions in different seasons could be assessed. 
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APPENDIX A 

Coefficient values for the original (top) and new (bottom) blue crab and white shrimp MAR 

models.  Coefficients with confidence bounds not overlapping 0 are shown in bold.  Coefficients 

not estimated in the models are indicated by dots. 
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L
ag

 1
 

White shrimp 

trawl 
      

      

White shrimp 

seine 
      

      

Southern 

flounder 
      

      

L
ag

 2
 

White shrimp 

trawl 
      

      

White shrimp 

seine 
      

      

Southern 

flounder 
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APPENDIX B 

R2 and conditional R2 values for the regressions for each species included in the original (top 

values) and updated (bottom values) blue crab and white shrimp MAR models.  Values that 

changed by more than 0.02 are highlighted.  R2 provides a measure of the total variance in the 

time-series explained by a model.  Conditional R2 is a measure of how much of the change 

between time-steps is explained by an autoregressive model.  Since the lag 0 models were not 

autoregressive, there are no conditional R2 values for those models. 

Blue Crab       

  Years Seasons Months 

 Variate R2 Cond. R2 R2 Cond. R2 R2 Cond. R2 

L
ag

 0
 

Blue crab gill 
0.42 - 0.20 - 0.08 - 

0.45 - 0.20 - 0.08 - 

Blue crab trawl 
0.39 - 0.28 - 0.10 - 

0.37 - 0.27 - 0.10 - 

Blue crab seine 
0.26 - 0.13 - 0.05 - 

0.24 - 0.12 - 0.05 - 

Red drum 
0.36 - 0.28 - 0.24 - 

0.39 - 0.29 - 0.23 - 

Black drum 
0.51 - 0.37 - 0.25 - 

0.50 - 0.37 - 0.24 - 

Spotted seatrout 
0.37 - 0.25 - 0.12 - 

0.34 - 0.23 - 0.10 - 

L
ag

 1
 

Blue crab gill 
0.32 0.44 0.17 0.47 0.11 0.40 

0.28 0.44 0.17 0.47 0.12 0.40 

Blue crab trawl 
0.47 0.34 0.40 0.25 0.32 0.28 

0.45 0.35 0.41 0.26 0.31 0.29 

Blue crab seine 
0.18 0.48 0.12 0.36 0.06 0.47 

0.17 0.49 0.14 0.39 0.08 0.49 

Red drum 
0.20 0.37 0.16 0.40 0.17 0.38 

0.19 0.39 0.15 0.41 0.16 0.39 

Black drum 
0.41 0.29 0.40 0.31 0.16 0.33 

0.39 0.27 0.39 0.31 0.16 0.33 

Spotted seatrout 
0.35 0.37 0.27 0.40 0.11 0.41 

0.34 0.37 0.25 0.39 0.11 0.41 

L
ag

 2
 

Blue crab gill 
0.28 0.60 0.11 0.42 0.08 0.43 

0.28 0.60 0.10 0.42 0.07 0.42 

Blue crab trawl 
0.41 0.44 0.36 0.39 0.22 0.29 

0.41 0.46 0.34 0.38 0.25 0.34 

Blue crab seine 
0.17 0.54 0.08 0.48 0.09 0.53 

0.19 0.57 0.08 0.48 0.10 0.52 

Red drum 
0.13 0.52 0.17 0.35 0.10 0.37 

0.15 0.54 0.17 0.38 0.07 0.39 

Black drum 
0.33 0.40 0.30 0.26 0.11 0.42 

0.32 0.40 0.27 0.23 0.13 0.43 

Spotted seatrout 
0.36 0.55 0.25 0.39 0.10 0.43 

0.28 0.50 0.24 0.38 0.13 0.45 
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White Shrimp       

  Years Seasons Months 

 Variate R2 Cond. R2 R2 Cond. R2 R2 Cond. R2 

L
ag

 0
 

White shrimp 

trawl 
0.45 - 0.35 - 0.17 - 

0.45 - 0.37 - 0.18 - 

White shrimp 

seine 
0.10 - 0.07 - 0.02 - 

0.08 - 0.07 - 0.02 - 

Southern 

flounder 
0.08 - 0.05 - 0.01 - 

0.03 - 0.04 - 0.01 - 

L
ag

 1
 

White shrimp 

trawl 
0.20 0.51 0.27 0.52 0.25 0.32 

0.17 0.48 0.28 0.51 0.26 0.33 

White shrimp 

seine 
0.08 0.42 0.04 0.45 0.07 0.38 

0.08 0.46 0.02 0.45 0.07 0.38 

Southern 

flounder 
0.18 0.47 0.15 0.34 0.04 0.41 

0.17 0.48 0.14 0.39 0.03 0.41 

L
ag

 2
 

White shrimp 

trawl 
0.02 0.50 0.09 0.51 0.29 0.34 

0.01 0.47 0.07 0.49 0.30 0.37 

White shrimp 

seine 
0.05 0.55 0.04 0.45 0.07 0.51 

0.03 0.54 0.03 0.46 0.07 0.50 

Southern 

flounder 
0.12 0.50 0.09 0.48 0.06 0.38 

0.11 0.54 0.08 0.49 0.05 0.39 
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APPENDIX C 

The Water Availability Model (WAM) is used by the Texas Commission on Environmental Quality to 

evaluate water rights applications.  The model estimates the amount of water that would be in a river 

system based on a specific set of conditions, and output can include estimates of river discharge at specific 

gaging stations.  It is therefore possible to incorporate WAM discharge estimate output into the focal 

species models from the present study to assess the effects of different flow scenarios on blue crab and 

white shrimp abundance trends. 

Four WAM flow scenarios were selected for the example given here: 

1) Natural
1
:  estimated natural river flow with no surface water right use and no Edwards Aquifer use 

2) Natural EA
2
:  estimated natural flow with no surface water right use but with Edwards Aquifer use 

3) Run 8
 2

:  estimated river flow with current surface water right usage level and Edwards Aquifer use 

4) Run 3
 2

:  estimated river flow with maximum surface water right usage and Edwards Aquifer use 

Table C-1  Summary of the 4 WAM flow scenarios run to acquire river discharge estimates 

WAM flow scenario 
Surface water right usage 

level 
Edwards Aquifer use 

Natural none no 

Natural EA none yes 

Run 8 current yes 

Run 3 maximum yes 

 

As there are few surface water rights in the watersheds feeding into the Mission-Aransas Estuary relative 

to the Guadalupe Estuary, larger differences between various WAM flow scenarios were likely to be seen 

for the Guadalupe basin.  Therefore, WAM discharge estimates were acquired for the U.S. Geological 

Survey gage stations that were used to approximate flows to the Guadalupe Estuary in the focal species 

models (08176500 Guadalupe River at Victoria and 08188500 San Antonio River at Goliad)3. 

                                                 

 
1 South Central Texas Regional Water Planning Group & HDR Engineering, Inc., “South Central Texas Regional 

Water Planning Area, 2011 Regional Water Plan, Volume 1, Executive Summary and Regional Water Plan,” San 

Antonio River Authority, Texas Water Development Board, September 2010, p. 7-30, 

http://www.twdb.texas.gov/waterplanning/rwp/plans/2011/L/Region_L_2011_RWPV1.pdf?d=1560200019318. 
2 Dr. Kathy Alexander, Texas Commission on Environmental Quality, “Draft Guadalupe – San Antonio River Basin 

Water Availability Model Input Data Files,” Personal Communication with HDR Engineering, Inc., April 11, 2019. 

These data files were received by “Personal Communication” and identified as “Draft” because TCEQ staff are in 

the midst of periodic data file updates and such updates have yet to be posted to their website 

https://www.tceq.texas.gov/permitting/water_rights/wr_technical-resources/wam.html. 
3 HDR Engineering, Inc., “Simulated Flows at Victoria and Goliad for Four Scenarios,” Personal Communication, 

June 6, 2019. 

http://www.twdb.texas.gov/waterplanning/rwp/plans/2011/L/Region_L_2011_RWPV1.pdf?d=1560200019318
https://www.tceq.texas.gov/permitting/water_rights/wr_technical-resources/wam.html
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The WAM discharge output for the 4 flow scenarios consisted of monthly total discharge in acre-feet from 

Jan 1934-Dec 1989 for each gage station.  Coefficients in the focal species models were estimated from 

discharge time-series with units of logged ft3 s-1.  To make the WAM discharge time-series compatible 

with the focal species model, they were converted to ft3 s-1 by multiplying each value by 43,560 ft3 and 

dividing by the number of seconds in the respective month.  Values were then summed between the 

stations to get a total monthly flow rate approximation, averaged into the seasonal increments used in the 

focal species models (winter Jan-Mar, spring Apr-Jun, summer Jul-Sep, fall Oct-Dec), and log 

transformed (Figure C-1, Table C-2, Figure C-2). 

 

Figure C-1  Seasonal time-series of river discharge based on WAM output for each of 4 flow 

scenarios:  Natural, Natural EA, Run 8, and Run 3 (see Table C-1).  Horizontal dotted lines 

represent overall discharge means for each scenario. 

Table C-2  Mean river discharge estimated for the 4 WAM flow scenarios and the percent 

discharge relative to the Natural scenario. 

WAM flow 

scenario 

Mean river discharge (ft3 s-1) % Natural 

discharge Winter Spring Summer Fall Overall 

Natural 2366 3799 2379 2429 2743 100 

Natural EA 2100 3519 2098 2157 2469 90 

Run 8 1887 3336 1963 2104 2322 85 

Run 3 1606 3036 1722 1871 2059 75 
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Figure C-2  Overall and seasonal river discharge means estimated for each of 4 WAM flow 

scenarios.  Horizontal dotted lines represent mean discharge values under the Natural scenario.  

Percent change in discharge using the Natural scenario as a baseline is shown on each bar. 

The blue crab and white shrimp models given in Tables 4-2 and 4-5, respectively, were used to estimate 

abundance trends for each species under each flow scenario.  In these models, the water temperature time-

series consisted of the seasonal means from the San Antonio Bay TPWD trawl temperature time-series 

repeated for each year (Table C-3).  Initial values for the density dependent terms for each species (Table 

C-3) were taken as the seasonal means of their abundance time-series estimated with the mean water 

temperature time-series described here and the measured discharge time-series for the Guadalupe Estuary 

used in the focal species models (Section 4.3.0).  New abundance time-series were calculated one time-

step at a time, so that each new estimate was based off of the estimated abundance value at the previous 

time-step. 

Table C-3  Seasonal water temperature means repeated to construct the water temperature time-

series and values of blue crab and white shrimp abundance used for initial density dependent 

terms in the models. 

Season Water temperature (°C) Blue crab (CPUE) White shrimp (CPUE) 

Winter 15.3 17.4 5.9 

Spring 25.4 37.3 6.8 

Summer 29.2 11.4 65.3 

Fall 19.8 6.2 66.9 
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Blue crab and white shrimp abundances are both strongly seasonal (see Figure 4-9), so yearly means of 

the estimates are shown in Figures C-3 and C-4 to more clearly demonstrate long-term temporal trends.  

See Table C-4 for seasonal and overall mean abundance values for each species under each flow scenario. 

 

Figure C-3  Yearly time-series of blue crab abundance based on WAM discharge estimates for 

each of 4 flow scenarios.  Horizontal dotted lines represent overall abundance means for each 

scenario. 

 

 

Figure C-4  Yearly time-series of white shrimp abundance based on WAM discharge estimates 

for each of 4 flow scenarios.  Horizontal dotted lines represent overall abundance means for each 

scenario. 
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Table C-4  Mean blue crab and white shrimp abundances estimated for the 4 WAM flow 

scenarios and the percent overall abundance of each species relative to its abundance under the 

Natural scenario. 

Focal 

species 

WAM flow 

scenario 

Mean abundance (CPUE) % Natural 

abundance 
Winter Spring Summer Fall Overall 

Blue 

crab 

Natural 16.9 36.9 11.3 6.1 17.8 100 

Natural EA 16.7 36.0 11.2 6.1 17.5 98 

Run 8 16.3 35.5 11.1 6.1 17.2 97 

Run 3 16.0 34.4 10.9 6.0 16.8 94 

White 

shrimp 

Natural 6.3 6.9 72.7 70.1 39.0 100 

Natural EA 6.1 6.7 68.5 66.7 37.0 95 

Run 8 6.0 6.6 68.7 66.0 36.8 94 

Run 3 5.8 6.3 66.0 63.3 35.3 91 

 

Figures C-5 and C-6 depict the overall and seasonal mean abundances for blue crab and white shrimp 

given in Table C-4.  Abundances of both species were negatively affected by decreases in discharge 

between scenarios, although larger decreases in abundance relative to those under the Natural scenario 

were seen for white shrimp than for blue crab.  Also, it is interesting to note that the changes in relative 

abundance between flow scenarios are not parallel between the two species (Figure C-7).  While blue crab 

abundance decreases by a fairly consistent increment (~1.9%) between each pair of scenarios, white 

shrimp abundance does not greatly change between the Natural EA and Run 8 scenarios (<0.5%).  Since 

the abundance models for both species were run with identical temperature and discharge time-series, 

these inconsistencies can be attributed to differing importance of conditions in certain seasons for each 

species and differing levels of density dependence.  It is possible that, due to such differences, the 

relatively high white shrimp abundances in the Run 8 scenario reflect positive influences of treated 

wastewater discharges that are not present in the other flow scenarios and tend to increase low, typically 

summer and fall, flows above the Natural EA levels. 
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Figure C-5  Overall and seasonal blue crab abundance means estimated for each of 4 WAM 

flow scenarios.  Horizontal dotted lines represent mean abundances under the Natural scenario.  

Percent change in abundance using the Natural scenario as a baseline is shown on each bar. 

 

Figure C-6  Overall and seasonal white shrimp abundance means estimated for each of 4 WAM 

flow scenarios.  Horizontal dotted lines represent mean abundances under the Natural scenario.  

Percent change in abundance using the Natural scenario as a baseline is shown on each bar. 
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Figure C-7  Percent difference in blue crab and white shrimp abundance for each % difference 

in river discharge relative to conditions under the Natural flow scenario.  Flow scenarios 

associated with each % difference are marked with vertical dotted lines and labeled in gray. 
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APPENDIX D 

Assessing the effects of freshwater inflows and other key drivers on the 

population dynamics of blue crab and white shrimp using a multivariate time 

series modeling framework: Phase 2.  
 

TWDB Contract #1600011966 

 

REQUIRED CHANGES  
 

General Draft Final Report Comments: 

   

This study report presents an evaluation of a multivariate autoregressive (MAR) modeling 

approach to study the population dynamics of blue crab and white shrimp in the Guadalupe 

Estuary. The information yielded from this research represents the best available science with 

respect to estimation of blue crab and white shrimp abundance in the Guadalupe Estuary based 

on freshwater inflow and temperature. The report is well-organized and well-written, adequately 

addresses the study goals and objectives as described in the scope of work, and provides tools 

and insights relevant to informing the validation or refinement of freshwater inflow standards. 

One reviewer explicitly stated support for the author’s suggestions under ‘Future Directions’ that 

modeling methods developed in this study could be applied to assess the effects of seasonal river 

discharge and water temperature on finfish and oyster abundances. 

 

1. Please add the following corrections (underlined) to the statement on the cover page of 

the final report:  

Pursuant to House Bill 1 as approved by the 84th Texas Legislature, this study report 

was funded for the purpose of studying environmental flow needs for Texas rivers and 

estuaries as part of the adaptive management phase of the Senate Bill 3 process for 

environmental flows established by the 80th Texas Legislature. The views and 

conclusions expressed herein are those of the author(s) and do not necessarily reflect the 

views of the Texas Water Development Board.  - Corrections made  

 

2. Please discuss the implications of gear selectivity for the focal species (i.e., how well the 

selected gears capture shrimp and crab) on interpretation of model results. Please refer 

also to comment #7 under the next section labeled ‘Specific Draft Final Report 

Comments.’ This discussion can be included in a section of the report determined by the 

author.  

- Details on the spatial and size selectivity of the gear types was added to Section 3.4.2.  

Sections 4.4.1 and 4.4.2 contain discussion on how selection for larger/older and 

potentially migratory individuals affects interpretation of model results 

 

3. Please minimize the use of acronyms so that readers aren’t required to search the 

document for the significance of the acronym upon each encounter. 

- The 5 acronyms that are used multiple times throughout the paper have been re-defined 

more frequently  
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Specific Draft Final Report Comments: 

1. Section 1.0.0, Project Overview, Page 1: Please add an executive summary of results to 

the project overview. 

- Summary of results was added to overview 

 

2. Section 2.3.0, Background, Phase 1 summary, Page 4: Please clearly define the focal and 

predator species in the text and refer to Table 2-1. 

- Text was updated 

 

3. Section 3.1.0, Methods, Data acquisition and preparation, Page 6:   

a. Please provide a brief rationale for excluding samples taken from small, 

shallow bays and lakes. Likewise, Espiritu Santo Bay was dropped later 

because it was “not well aligned” with others. Please define “not well 

aligned” and discuss relevant implications or additional insight into the flow 

ecology of these bay systems, given that Espiritu Santo Bay is an exception.   

- More detail added and flow ecology mentioned 

b. Please describe why the more proximate gaging station at Tivoli was not used 

to estimate discharge into the Guadalupe Estuary (e.g., short period of 

record).  

- A mention of the short temporal overlap of the Tivoli station time-series 

with the species abundance time-series was added to the text 

c. The TWDB estimated surface inflow data are presented in Figure 4-4 on 

Page 16, but there is no description of this dataset. Please add a description of 

the TWDB estimated surface inflow in the Methods section or remove Figure 

4-4 if these data were not used in the analysis 

- Mention of the TWDB surface inflow estimates was removed from the 

report since these data were not used in any of the final model 

 

4. Section 3.2.0, Methods, Re-run original MAR models, last paragraph, Page 7: Please 

provide a description of bootstrapping and justification for using 500 iterations, as 

bootstraps typically use a larger number of iterations. 

- Text was updated to indicate that this number of iterations is often used in ecological 

MAR analyses 

 

5. Section 3.3.0, Methods, Reformat data into seasonal increments, second paragraph, Page 

7: Please provide an expanded description of the cubic smoothing spline method 

including justification, purpose, caveats and assumptions for the selection of this 

interpolation method for seasonal trends. The use of this interpolation method assumes a 

pattern in the months between gill net samples. Please discuss how the interpolated 

pattern created for the gill nets match the monthly patterns for the gears which have year-

round data. As well, in the results section, clearly label which sections of analysis are 
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based on the seasonal interpolated data. If feasible, please provide fit statistics for the 

interpretation within the results section. If the cubic smoothing spline method was not 

used to develop the final models and is not relevant to the final study results, please 

clearly indicate this or remove the discussion entirely. 

- Text was altered to clarify that these interpolated time-series were not ultimately used in 

the models and are not relevant to the results 

 

6. Section 3.3.0, Methods, Reformat data into seasonal increments, Pages 7–8: Please 

include in an appendix, in graphical or tabular form, the raw data of the monthly 

estimated values of CPUE alongside the sample CPUE for each variable to allow for 

complete reproduction of the analysis by other researchers. 

- Text was altered to clarify that these interpolated time-series were not ultimately used in 

the models and are not relevant to the results 

 

7. Section 3.4.2, Methods, Revised methods, second paragraph, Page 9: Please include a 

discussion about the degree to which patterns match between the otter trawl data series 

and the omitted gill net and bag seine data series. The use of trawl-only data makes an 

assumption that this data set is truly representative of abundance patterns for these 

species, but the degree to which this may or may not be the case has implications for 

interpreting results from the simplified model structure. This discussion could also be 

included in Section 4 where model results for the simplified model are discussed. 

- Section 3.4.2 was updated with more detail on why the trawl data were used and the gill 

and seine data were omitted 

 

8. Section 3.4.2, Methods, Revised methods, Pages 9–10:  

a. In the description of the revised modeling methodology, it is stated that several of 

the predictor values such as salinity and predator species abundances were 

removed because they were affected by freshwater inflows, and if estimated as a 

function of freshwater inflows would introduce increased error and cross-

correlations into the final models. Please describe the calculated potential error 

from cross-correlation effects between freshwater inflows and water temperature 

in the revised modeling methodology (e.g., visual inspection of some of the 

graphs such as Figure 4-3 and 4-4 seem to indicate a strong inverse relationship 

between these parameters). 

- These 2 variables do seem correlated, but correlations are actually small and not 

significant.  This statement was added to section 3.4.2 

b. In the description of the revised modeling methodology, it is stated that white 

shrimp abundance for lags of greater than 1 year were not included because the 

white shrimp life span only lasts for one year and that lags of greater than 2 years 

were not included for blue crabs because this was the extent of the blue crab life 

span. Please describe how the inherent seasonal bias of trawl sampling for 

migratory species is accounted for in the model (i.e., pre-juvenile life stages and 
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reproducing females of the focal species are unlikely to be counted with this 

methodology during significant portions of the winter and spring sampling 

seasons). 

- The seasonal bias of trawl sampling was not accounted for in the models, which 

was the likely cause of poor model fits for certain seasons.  This is stated in the 

first paragraphs of sections 4.4.1 and 4.4.2 

 

9. Section 3.4.2, Methods, Revised methods, last paragraph, Page 11: As a reminder, please 

submit the data and annotated R code used to compile the final models to the TWDB with 

the final report. 

 

Figures and Tables Comments: 

 

1. Figure 3-1, Page 8: Please label the x-axis with “Month.”  

- This figure was deleted 

 

2. Figure 4-1, Page 14; Figure 4-2 and 4-3, Page 15; Figure 4-4, Page 16: Please ensure 

consistent, uniform axis labels throughout the report. The orientation of the year (e.g., 

1985) on the x-axis in these figures is inconsistent with others, such as Figure 4-9, Page 

22; and Figure 4-10, Page 23.  

- Where space constraints required year labels to be rotated, the figures were edited so the 

orientation of the labels is consistent 

 

3. Figure 4-4, Page 16: Aransas Bay and Espiritu Santo Bay are represented in the legend, 

but the data are not included in the figure. Please make the appropriate correction. 

- Figure legend was corrected 

 

4. Figure 4-9, Page 22: Figure 4-9, Page 22: Please add a space between “springsummer” in 

the x-axis label. 

- No species abundance estimations were used in the final seasonal models.  The text was 

clarified and the spacing was fixed 

 

5. Table 3-1, Page 11: Please add a dash “-“ or other symbol if there are no values and 

mention this in the figure caption.  

- Dashes were added to the table 

 

6. Table 4-2, Page 24 and Table 4-5, Page 27: Please explicitly state what the green and red 

colored values represent.  

- Table captions were edited to include this information 

 

7. APPENDIX A, Page 39: Please add a dash “-“ or other symbol if there are no values and 

mention this in the text.  

- Symbols were added where no values were estimated 
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SUGGESTED CHANGES 
 

Specific Draft Final Report Comments: 

 

1. Section 2.1.0, Background, Page 3: Where applicable, please clarify whether the author 

intends to mean “density” or “CPUE” when stating “abundance” which refers to counts 

of individuals or relative abundances. 

- Text was edited to clarify that, when referring to the TPWD data, “abundance” refers to 

“CPUE” 

 

2. Section 2.2.0, Previous studies, Page 3:  

a. Please define “calculated salinity zones” and describe the association between 

white shrimp and the salinity gradient, including whether the association is 

positive or negative. 

- A brief description of salinity zones was added, and the word “positive” was 

added to describe the association between white shrimp and freshwater inflows 

b. Please define “habitat structure” and provide a citation for the suggestion that the 

apparent relationship between shrimp abundance and salinity is due to an 

underlying correlation between salinity and habitat structure. 

- An example of habitat structure and an example reference were added 

c. Please give a few examples of the additional factors that covary with salinity that 

affect the distribution of white shrimp. 

 

3. Section 2.3.0, Background, Page 5, regarding model variables: Please consider providing 

both the scientific and common names for these species. Then, defer to using common 

names throughout the report. 

- Scientific names were added 

 

4. Sections 3.0.0 and 4.0.0, Methods, Analysis and Results: Discussion at the Guadalupe-

San Antonio Basin and Bay Area Stakeholder Committee meeting on March 25, 2019 

resulted in a suggestion to utilize WAM output for inflow scenario assessment, and 

relevant time series of scenario flows (i.e., Natural, Natural with Edwards Aquifer 

Habitat Conservation Plan (EAHCP), Run8, & Run3) have been provided by HDR in 

cooperation with TCEQ. While not a requirement in the scope of work, if there is 

sufficient time please consider adding a brief section in the report or appendix comparing 

simulated differences in focal species abundance for hydrologic scenarios ranging from 

natural to fully permitted surface water use. Also, please modify the first paragraph in 

Section 6.0.0, Future Directions (Page 37) in accordance with this information. 

- This analysis was added as Appendix C and the text was updated 

 

5. Section 3.1.0, Methods, Data acquisition and preparation, Page 6:   
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a. Please consider the possibility that the Tivoli gage is a more accurate 

representation of inflow to the bay. Consider conducting a comparison between 

the streamflow at Tivoli (e.g., 2000 – 2015) and the sum of streamflow at 

Guadalupe River-Victoria and San Antonio River-Goliad (e.g., 2000–2015). It 

would be helpful to know how the well the sum discharge corresponds with the 

Tivoli discharge, especially if there are certain aspects of the flow regime (e.g., 

low flows, some smaller flow pulses) that are evident at Guadalupe at Victoria 

and San Antonio at Goliad but not at Tivoli.    

- A more detailed discussion of the discharge differences between gages was 

added 

 

6. Section 3.2.0, Methods, Re-run original MAR models, Page 6, first paragraph of this 

section: Consider adding a sentence to explain the need for log-transformation of raw 

data (e.g., to address non-normal, skewed distributions). 

- Explanation was added 

 

7. Section 4.0.0., Analysis and Results, throughout: The authors have used Coefficient of 

Determination (R2) as the statistical index to determine variability in the data and MAR 

models but there are several other indices that demonstrate correlation between observed 

and modelled data. Please provide a justification including some reference for using this 

index.  

 

8. Section 4.2.0, Analysis and Results, Updated MAR models, Page 17: Please consider 

expanding this section to include a discussion on the relevancy and value of updating 

original MAR models with two additional years of data. A lot of information is provided 

to show correspondence between MAR analyses with updated data and original models, 

but the added value of this exercise is not clear. 

- A brief statement describing why the patterns detected in the original models were 

verified before proceeding with the seasonal modeling exercise was added to the 

Overview 

 

9. Section 4.3.0, Analysis and Results, Seasonal time-series, Page 21: This section includes 

several graphs with linear trend lines, but please consider deleting non-significant trend 

lines, providing a table with P-values for each trend line, or adding P-values for the slope 

to each graph. By convention, trend lines are not used unless the trend (slope) is different 

from zero.   

- The line types of the trend lines were re-formatted to indicate p-values 

 

10. Section 4.4.1, Analysis and Results, Blue Crab, Page 26, last paragraph of this section: 

Consider adding a sentence noting that the R2 of 0.52 for step-wise blue crab abundance 

estimates exceeds the R2 of 0.45 for blue crab harvest estimates used in the cited 1998 

TPWD/TWDB Freshwater Inflow Recommendation for the Guadalupe Estuary of Texas. 



66 

 

- This comparison was not added, in part because the harvest estimate R2 value 

referenced in this suggestion was not included in the 1998 TPWD/TWDB report or in the 

2011 Region L Water Plan.  There is therefore no published citation for this value 

 

11. Section 4.4.2, Analysis and Results, White Shrimp, Page 28, last paragraph of this 

section: Consider adding a sentence noting that the R2 of 0.64 for step-wise white shrimp 

abundance estimates exceeds the R2 of 0.54 for white shrimp harvest estimates used in 

the cited 1998 TPWD/TWDB Freshwater Inflow Recommendation for the Guadalupe 

Estuary of Texas. 

- This comparison was not added, in part because the harvest estimate R2 value 

referenced in this suggestion was not included in the 1998 TPWD/TWDB report or in the 

2011 Region L Water Plan.  There is therefore no published citation for this value 

 

12. Section 4.5.1, Analysis and Results, Blue Crab, second paragraph, Page 31: Consider 

deleting Appendix C and the corresponding sentence, “For details on how these altered 

flows relate to the base and subsistence flow standards set by TCEQ for the flow gage 

stations included in this analysis, see Appendix C.” Potential comparisons using 

information presented in Appendix C can easily be misleading without supplemental 

information. For example, the seasonal “base” flows in the TCEQ standards for the 

Guadalupe River gage are adjusted “base” flows for wet hydrologic conditions while the 

base flows for the San Antonio and Mission Rivers are for average hydrologic conditions. 

Furthermore, seasonal subsistence flows for the Guadalupe River are statistically-

calculated values (i.e., medians of the lowest 10% of seasonal base flows), while the 

subsistence flow for the San Antonio River is based on temperature and dissolved oxygen 

modeling (and is the same for all seasons) and the subsistence flow for the Mission River 

is the Q95 value for three seasons. 

- Appendix C was replaced with the WAM discharge time-series analysis results and 

references to the appendix were edited accordingly 

 

13. Section 4.5.2, Analysis and Results, White Shrimp, second paragraph, Page 34: Consider 

deleting Appendix C and the corresponding sentence, “For details on how these altered 

flows relate to the base and subsistence flow standards set by TCEQ for the flow gage 

stations included in this analysis, see Appendix C.” See comment 12 immediately above 

for explanation. 

- Appendix C was replaced with the WAM discharge time-series analysis results and 

references to the appendix were edited accordingly 

 

14. Section 5.0.0, Conclusions, first paragraph, Page 36:  

a. Consider adding a sentence highlighting the finding (described on Page 10) that 

omission of salinity and predator species as predictor variables avoids 

introduction of cross-correlations and increased error with very limited reductions 

in model fits (i.e., decreases in R2 values by less than 0.05). This is an important 
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conclusion that might otherwise be overlooked. 

- Statement was added 

b. Please add quantitative ranges to descriptions such as “high summer water 

temperatures” (e.g., > XX°C) and “decreases in discharge” (e.g., < X amount of 

discharge in cubic feet per second) to clarify for the reader what exact values are 

being referred to. Please also consider adding the percent of time these summer 

time temperatures were exceeded during the period of data collection. 

- It is more the directions of the relationships than exact values that are being 

discussed here.  Increases in temperature or decreases in discharge of any amount 

will have the described effects on focal species abundances 

c. Please consider synthesizing these findings in relation to similar studies/scientific 

literature and to the life history of white shrimp (e.g., highlighting mechanistic 

relationships between temperature and life history strategies). 

 

15. Section 6.0.0, Future Directions, Page 37: Please consider sharing your vision on the 

application of the models as a tool for validating the environmental flow standards. 

Reducing inflow by 25% was done as a proof of concept to illustrate that the models for 

white shrimp could be modified for different hypothetical freshwater inflow conditions. 

Please consider highlighting or expanding the discussion on this point. While reducing 

discharge by 25% doesn’t necessarily address the validation of the TCEQ standards, it 

does demonstrate the concept. Consider discussing specific details on how these models 

can be used for different scenarios related to TCEQ standards (e.g., removing two per 

season flow events) and mention how the model would need to be revised/changed to 

address this scenario.  

- A reference to Appendix C where the species abundance models were run with TCEQ 

WAM flow scenarios and a statement of how this type of analysis can be used to assess 

the effects of changes to the TCEQ flow standards were added to this section 

 

Figures and Tables Comments: 

 

1. All figures: Please consider increasing the font size of axis labels for easier visualization. 

- The font size of axis labels was increased where space allowed 
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